Skip to main content
Log in

Protective effect of nitric oxide on cytoskeletal proteins in rat soleus under eccentric exercise

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An in vivo study was performed to see whether deterioration of the muscle cytoskeleton caused by eccentric exercise could be counteracted by raising the tissue content of nitric oxide. In Wistar rats that ran downhill on a treadmill inclined at 16° for 40 min at 20 m/min, the desmin content in m. soleus measured 24 h later declined by 15%, and the percentage of ruptures in the dystrophin layer was three times higher than in the control. Destruction of cytoskeletal proteins was also pronounced in rats pretreated with a blocker of NO synthase before exercise. By contrast, animals that received a nitric oxide donor (L-arginine) prior to running had control levels of desmin and dystrophin. It was concluded that nitric oxide can protect muscle cytoskeletal proteins in a single eccentric exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fridén and R. Lieber, Acta Physiol. Scand. 17(13), 321 (2001).

    Article  Google Scholar 

  2. J. Komulainen, S. O. Koskinen, R. Kalliokoski, et al., Acta Physiol. Scand. 165(1), 57 (1999).

    Article  Google Scholar 

  3. R. L. Lieber, M. C. Schmitz, D. K. Mishra, and J. Fridén, J. Appl. Physiol. 77(4), 1926 (1994).

    Google Scholar 

  4. R. L. Lieber, L. E. Thornell, and J. Fridén, J. Appl. Physiol. 80(1), 278 (1996).

    Article  Google Scholar 

  5. E. Germinario, A. Esposito, A. Megighian, et al., J. Appl. Physiol. 92(5), 2045 (2002).

    Google Scholar 

  6. R. M. Lovering, P. G. De Deyne, Am. J. Physiol. Cell Physiol. 286(2), C230 (2004).

    Article  Google Scholar 

  7. M. A. Rey and P. L. Davies, FEBS Lett. 532(3), 401 (2002).

    Article  Google Scholar 

  8. S. Duguez, M. Bartoli, and I. Richard, FEBS J. 273(15), 3427 (2006).

    Article  Google Scholar 

  9. R. M. Murphy, C. A. Goodman, and M. J. McKenna, J. Appl. Physiol. 103(3), 926 (2007).

    Article  Google Scholar 

  10. C. P. Ingalls, G. L. Warren, and R. B. Armstrong, J. Appl. Physiol. 87(1), 386 (1999).

    Google Scholar 

  11. G. S. Lynch, C. J. Fary, and D. A. Williams, Cell Calcium 22(5), 373 (1997).

    Article  Google Scholar 

  12. D. Branca, A. Gugliucci, and D. Bano, Eur. J. Biochem. 265(2), 839 (1999).

    Article  Google Scholar 

  13. S. Duguez, M. Bartoli, and I. Richard, FEBS J. 273(15), 3427 (2006).

    Article  Google Scholar 

  14. M. Garcia, V. Bondada, and J. W. Geddes, Biochem. Biophys. Res. Commun. 338(2), 1241 (2005).

    Article  Google Scholar 

  15. M. Michetti, F. Salamino, E. Melloni, and S. Pontremoli, Biochem. Biophys. Res. Commun. 207(3), 1009 (1995).

    Article  Google Scholar 

  16. T. J. Koh and J. G. Tidball, Am. J. Physiol. Cell Physiol. 279(3), C806 (2000).

    Google Scholar 

  17. D. Pye, J. Palomero, T. Kabayo, and M. J. Jackson, J. Physiol. 581(Pt 1), 309 (2007).

    Article  Google Scholar 

  18. J. S. Zhang, W. E. Kraus, and G. A. Truskey, Am. J. Physiol. Cell Physiol. 287(2), C292 (2004).

    Article  Google Scholar 

  19. A. F. Vanin, A. Huisman, and E. E. van Faassen, Methods Enzymol. 359, 27 (2002).

    Article  Google Scholar 

  20. M. Yu. Obolenskaya, A. F. Vanin, P. I. Mordvintcev, et al., Biophys. Biochem. Res. Com. 202(1), 571 (1994).

    Article  Google Scholar 

  21. T. W. Balon and J. L. Nadler, J. Appl. Physiol. 77(6), 2519 (1994).

    Google Scholar 

  22. T. L. Nemirovskaya, Yu. N. Kitina, A. V. Zheleznyakova, and I. M. Vikhlyantsev, Ross. Fiziol. Zh. im. Sechenova 3(94), 293 (2008).

    Google Scholar 

  23. R. M. Murphy, R. J. Snow, and G. D. Lamb, Am. J. Physiol. Cell Physiol. 290(1), C116 (2006).

    Article  Google Scholar 

  24. N. Stupka, M. A. Tarnopolsky, N. J. Yardley, and S. M. Phillips, J. Appl. Physiol. 91(4), 1669 (2001).

    Google Scholar 

  25. R. M. Murphy, E. Verburg, and G. D. Lamb, J. Physiol. 576(2), 595 (2006).

    Article  Google Scholar 

  26. T. J. Koh and J. G. Tidball, J. Physiol. 519(1), 189 (1999).

    Article  Google Scholar 

  27. J. E. Sellman, K. C. DeRuisseau, J. L. Betters, et al., J. Appl. Physiol. 100(1), 258 (2006).

    Article  Google Scholar 

  28. U. Frandsen, M. Lopez-Figueroa, and Y. Hellsten, Biochem. Biophys. Res. Commun. 227(1), 88 (1996).

    Article  Google Scholar 

  29. C. K. Roberts, R. J. Barnard, A. Jasman, and T. W. Balon, Am. J. Physiol. 277(2 Pt 1), E390–394 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Nemirovskaya.

Additional information

Original Russian Text © Yu.N. Lomonosova, A.V. Zheleznyakova, A.E. Bugrova, A.V. Zhiryakova, G.R. Kalamkarov, T.L. Nemirovskaya, 2009, published in Biofizika, 2009, Vol. 54, No. 3, pp. 515–521.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomonosova, Y.N., Zheleznyakova, A.V., Bugrova, A.E. et al. Protective effect of nitric oxide on cytoskeletal proteins in rat soleus under eccentric exercise. BIOPHYSICS 54, 361–364 (2009). https://doi.org/10.1134/S0006350909030191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909030191

Key words

Navigation