Skip to main content
Log in

Brownian dynamics description of transmembrane ion flow exemplified with the glycine receptor chloride channel

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built that describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It is shown that, if the membrane pore geometry is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes into account the changes in the density of charge distribution both inside the channel and near the protein surface. Alteration of pore geometry can be also considered as a parameter at the researcher’s option. Thus, the model may be an effective tool for description of transmembrane currents in other types of membrane channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. R. Nartsissov, Biofizika 44(41), 403 (1999).

    Google Scholar 

  2. I. P. Seraya and Ya. R. Nartsissov, Mol. Biol. Reports 29, 151 (2002).

    Article  Google Scholar 

  3. I. P. Seraya, Ya. R. Nartsissov, and G. Brown, Biofizika 48(1), 91 (2003).

    Google Scholar 

  4. Ya. R. Nartsissov and E. V. Mashkovtseva, Biofizika 50(6), 1048 (2005).

    Google Scholar 

  5. Ya. R. Nartsissov and E. V. Mashkovtseva, J. Theor. Biol. 242(2), 300 (2006).

    Article  MathSciNet  Google Scholar 

  6. K. Cooper, E. Jakobsson, and P. Wolynes, Prog. Biophys. Mol. Biol. 46, 41 (1985).

    Article  Google Scholar 

  7. S. C. Li, M. Hoyles, S. Kuyucak, and S.-H. Chung, Biophys. J. 74, 37 (1998).

    Article  ADS  Google Scholar 

  8. J. Bormann, N. Runstrom, H. Betz, and D. Langosch, EMBO J. 12, 3729 (1993).

    Google Scholar 

  9. F. Wang and K. Imoto, Proc. R. Soc. Lond. B Biol. Sci. 250, 11 (1992).

    Article  ADS  Google Scholar 

  10. P. Nelson, Biological Physics. Energy, Information, Life (Freeman and Co., N.Y., 2004).

    Google Scholar 

  11. S. E. Boronovsky, I. P. Seraya, and Ya. R. Nartsissov, IEE Proc.-Syst. Biol. 153, 394 (2006).

    Article  Google Scholar 

  12. M. Beato, P. J. Groot-Kormelink, D. Colquhoun, and L. G. Sivilotti, J. Gen. Physiol. 119, 443 (2002).

    Article  Google Scholar 

  13. P. Bednarczyk, A. Szewczyk, and K. Dolowy, Acta Biochim. Polonica 49, 869 (2002).

    Google Scholar 

  14. D. Bisset, B. Corry, and S.-H. Chung, Biophys. J. 89, 179 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. R. Nartsissov.

Additional information

Original Russian Text © S.E. Boronovsky, Ya.R. Nartsissov, 2009, published in Biofizika, 2009, Vol. 54, No. 3, pp. 448–453.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boronovsky, S.E., Nartsissov, Y.R. Brownian dynamics description of transmembrane ion flow exemplified with the glycine receptor chloride channel. BIOPHYSICS 54, 312–315 (2009). https://doi.org/10.1134/S0006350909030087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909030087

Key words

Navigation