Skip to main content
Log in

Thermodynamic description of oligonucleotide self-association in DNA concatamer structures

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A scheme of equilibrium formation of concatamers by two different oligonucleotides has been considered. It is shown that in the general case, the dependence of the concentration of oligonucleotide components on temperature cannot be found in analytical form. Therefore, it is impossible to find the thermodynamic parameters of concatamer formation (ΔH 0, ΔS 0) and melting temperatures by analyzing the profiles of thermal denaturation of oligonucleotide complexes. An algorithm for numerical solution of implicit dependences has been developed. A number of approaches are considered that simplify the analysis of heat denaturation curves for concatamer complexes. It is shown that the dependence of the efficiency of concatamerization on temperature can be described analytically when duplex fragments have close stability and there is no cooperativity at the oligonucleotide junction. In this case, the dependence of melting temperature on thermodynamic parameters and oligonucleotide concentration has the same form as in the case of the duplex structure formed by a pair of non-self-complementary oligonucleotides. The ability of various model approaches to describe the experimental curves of concatamer heat denaturation is evaluated. For concatamer structures used as signal amplifiers in DNA hybridization analysis, a function is introduced that shows the relative contribution of a concatamer of given length to the magnitude of signal amplification. The dependence of the maximum of this function on the concentration of oligonucleotides, the thermodynamic characteristics of their complexes, and temperature has been determined. It is shown by the gel retardation assay that the function of the length distribution of concatamers qualitatively correlates with the experimental dependences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Simonova, A. V. Vladimirova, M. A. Zenkova, and V. V. Vlassov, Biochim. Biophys. Acta 1758(3), 413 (2006).

    Article  Google Scholar 

  2. T. Sarkar, C. C. Conwell, L. C. Harvey, et al., Nucl. Acids Res. 33(1), 143 (2005).

    Article  Google Scholar 

  3. S. P. Mathupala and A. E. Sloan, BMC Genomics 3(1), 20 (2002).

    Article  Google Scholar 

  4. N. G. Dolinnaya and Z. A. Shabarova, Izv. RAN Ser. Khim. no. 8, 1889 (1996).

  5. R. M. Dirks and N. A. Pierce, Proc Natl. Acad. Sci. USA 101(43), 15275 (2004).

    Google Scholar 

  6. M. S. Shchepinov, I. A. Udalova, A. J. Bridgman, and E. M. Southern, Nucl. Acids Res. 25(22), 4447 (1997).

    Article  Google Scholar 

  7. J. SantaLucia Jr. and D. Hicks, Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004).

    Article  Google Scholar 

  8. A. A. Lomzov, I. A. Pyshnaya, E. M. Ivanova, and D. V. Pyshnyi, Dokl. RAN 49(2), 266 (2006).

    Google Scholar 

  9. V. V. Demidov, M. V. Yavnilovich, B. P. Belotserkovskii, et al., Proc. Natl. Acad. Sci. USA 92(7), 2637 (1995).

    Article  ADS  Google Scholar 

  10. D. Miyoshi, Z.-M. Wang, H. Karimata, and N. Sugimoto, Nucl. Acid Symp. Ser. no. 49, 43 (2005).

  11. Z. A. Shabarova, N. G. Dolinnaya, S. I. Turkin, and E. S. Gromova, Nucl. Acids Res. 8(11), 2413 (1980).

    Article  Google Scholar 

  12. S. A. Kushon, J. P. Jordan, J. L. Seifert, et al., J. Am. Chem. Soc. 123(44), 10805 (2001).

    Google Scholar 

  13. M. Durand, K. Chevrie, M. Chassignol, et al., Nucl. Acids Res. 18(21), 6353 (1990).

    Article  Google Scholar 

  14. Handbook of Biochemistry and Molecular Biology: Nucleic Acids, Ed. by G. D. Fasman (CRC Press, 1975).

  15. M. Petersheim and D. H. Turner, Biochemistry 22(2), 256 (1983).

    Article  Google Scholar 

  16. K. J. Breslauer, Methods Mol. Biol. 26, 347 (1994).

    Article  Google Scholar 

  17. R. Owczarzy, Biophys. Chem. 117(3), 207 (2005).

    Article  Google Scholar 

  18. K. L. Berkner and W. R. Folk, J. Biol. Chem. 252(10), 3176 (1977).

    Google Scholar 

  19. D. V. Pyshnyi and E. M. Ivanova, Izv. RAN Ser. Khim. no. 7, 1057 (2002).

  20. P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii, Nucl. Acids Res. 34(2), 564 (2006).

    Article  Google Scholar 

  21. J. Petruska and M. F. Goodman, J. Biol. Chem. 270(2), 746 (1995).

    Article  Google Scholar 

  22. C. Cantor and P. Shimmel, Biophysical Chemistry (Mir, Moscow, 1984), Vol. 3.

    Google Scholar 

  23. A. V. Fotin, A. L. Drobyshev, D. Y. Proudnikov, et al., Nucl. Acid Res. 26(6), 1515 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Filippov, A.A. Lomzov, D.V. Pyshnyi, 2009, published in Biofizika, 2009, Vol. 54, No. 3, pp. 402–417.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, N.S., Lomzov, A.A. & Pyshnyi, D.V. Thermodynamic description of oligonucleotide self-association in DNA concatamer structures. BIOPHYSICS 54, 280–290 (2009). https://doi.org/10.1134/S0006350909030038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909030038

Key words

Navigation