Skip to main content
Log in

Autowaves in a model of invasive tumor growth

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A mathematical model for invasive tumor growth is proposed, which takes into account cell division, death, and motility. The model includes local cell density and the distribution of nutrient (oxygen) concentration. Cancer cells die in the absence of nutrients; therefore, the distribution of oxygen in tissue substantially affects both the tumor proliferation rate and its structure. The model adequately describes the experimentally measured rate of tumor proliferation. The existence of autowave solutions is demonstrated, and their properties are investigated. The results are compared with the properties of the Kolmogorov-Petrovskii-Piskunov and Fisher equations. It is shown that the nutrient distribution influences the selection of speed and the convergence of the initial conditions to the automodel solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Byrne, in Proc. 9th General Meetings of European Women in Mathematics (1999), pp. 81–107.

  2. G. G. Steel, Cell Tissue Kinet. 13, 451 (1980).

    Google Scholar 

  3. L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, Int. J. Exp. Pathol. 79, 1 (1998).

    Article  Google Scholar 

  4. R. M. Sutherland, Science 240, 177 (1988).

    Article  ADS  Google Scholar 

  5. H. Greenspan, Stud. Appl. Math. 51, 317 (1972).

    MATH  Google Scholar 

  6. J. A. Adam and S. A. Maggelakis, Bull. Math. Biol. 52, 549 (1990).

    MATH  Google Scholar 

  7. J. P. Ward and J. R. King, Math. Biosci. 181, 177 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. X. Chen and A. Friedman, SIAM J. Math. Anal. 35, 974 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. Y. Tao and M. Chen, Nonlinearity 19, 419 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. J. A. Sherratt, Proc. R. Soc. Lond. B 241, 29 (1990).

    Article  ADS  Google Scholar 

  11. P. Traqui, Acta Biotheoret. 43, 443 (1995).

    Article  Google Scholar 

  12. K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, J. Neurolog. Sci. 216, 1 (2003).

    Article  Google Scholar 

  13. A. V. Gusev and A. A. Polezhaev, Kr. Soobshch. Fiz. FIAN, no. 11–12, 85 (1997).

  14. A. V. Kolobov, A. A. Polezhaev, and G. I. Solyanyk, in Mathematical Modeling & Computing in Biology and Medicine, Ed. by V. Capasso (Progetto Leonardo, Bologna, 2003), pp. 603–609.

    Google Scholar 

  15. S. A. Astanin, A. V. Kolobov, A. I. Lobanov, et al., in Medicine in the Mirror of Informatics (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  16. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, Byull. Mosk. Gos. Univ., Sec. A 1, 1 (1937).

    Google Scholar 

  17. R. A. Fisher, Ann. Eugenics 7, 355 (1937).

    Google Scholar 

  18. V. V. Gubernov, G. N. Mercer, H. S. Sidhu, and R. O. Weber, SIAM J. Appl. Math. 63, 1259 (2003).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Polezhaev.

Additional information

Original Russian Text © A.V. Kolobov, V.V. Gubernov, A.A. Polezhaev, 2009, published in Biofizika, 2009, Vol. 54, No. 2, pp. 334–342.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolobov, A.V., Gubernov, V.V. & Polezhaev, A.A. Autowaves in a model of invasive tumor growth. BIOPHYSICS 54, 232–237 (2009). https://doi.org/10.1134/S0006350909020195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909020195

Key words

Navigation