Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species


It is (theoretically) shown by an example of the reaction of a radical with an oxygen molecule that the alternating component of a combined weak magnetic field affects the rate constants of chemical reactions. The mechanism of transduction of a weak magnetic perturbation from the primary receptor of the field to experimentally observed biological effects is followed. It is stated that the external magnetic field alters the initial population of energy levels. The magnitude of these changes depends on the field parameters. The exposure to an alternating field with proper parameters can substantially increase the concentration of reactive oxygen species in biological systems. By controlling their concentration by means of weak magnetic field, it is possible to affect the key links of metabolism.

This is a preview of subscription content, log in to check access.


  1. 1.

    E. Berman, L. Chacon, D. House, et al., Bioelectromagnetics 11(2), 169 (1990).

    Article  Google Scholar 

  2. 2.

    C. F. Blackman, S. G. Benane, and D. E. House, Bioelectromagnetics 22(2), 122 (2001).

    Article  Google Scholar 

  3. 3.

    N. A. Belova and V. V. Lednev, Biofizika 46(1), 122 (2001).

    Google Scholar 

  4. 4.

    J. Juutilainen, E. Laara, and K. Saali, Int. J. Radiat. Biol. Relative Studies Phys. Chem. Med. 52(5), 787 (1987).

    Article  Google Scholar 

  5. 5.

    R. P. Liburdy, T. R. Sloma, R. Sokolic, and P. Yaswen, J. Pineal Res. 14, 89 (1993).

    Article  Google Scholar 

  6. 6.

    M. A. Persinger, L. L. Cook, and S. A. Koren, Int. J. Neurosci. 100(1/4), 107 (1999).

    Google Scholar 

  7. 7.

    V. V. Novikov, Biophysics 49(Suppl. 1), S43 (2004).

    Google Scholar 

  8. 8.

    N. V. Bobkova, V. V. Novikov, N. I. Medvinskaya, et al., Biophysics 50(Suppl. 1), S2 (2005).

    Google Scholar 

  9. 9.

    V. V. Novikov, V. O. Ponomarev, and E. E. Fesenko, Biophysics 50(Suppl. 1), S110 (2005).

    Google Scholar 

  10. 10.

    V. V. Novikov, N. I. Novikova, and A. K. Kachan, Biofizika 41(4), 934 (1996).

    Google Scholar 

  11. 11.

    V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics (in press).

  12. 12.

    V. V. Novikov and M. N. Zhadin, Biofizika 39(1), 41 (1994).

    Google Scholar 

  13. 13.

    A. Pazur, Biomagnetic Res. Technol. 2, 8 (2004).

    Article  ADS  Google Scholar 

  14. 14.

    N. Comisso, E. Del Giudice, A. De Ninno, et al., Bioelectromagnetics 27(1), 16 (2006).

    Article  Google Scholar 

  15. 15.

    M. N. Zhadin, V. V. Novikov, F. S. Barnes, and N. F. Pergola, Bioelectromagnetics 19(1), 41 (1998).

    Article  Google Scholar 

  16. 16.

    A. L. Buchachenko, D. A. Kuznetsov, and V. L. Berdinskii, Biofizika 51(3), 545 (2006).

    Google Scholar 

  17. 17.

    V. V. Lednev, A. K. Srebnitskaya, E. N. Il’yasova, et al., Dokl. Akad. Nauk 348(6), 830 (1996).

    Google Scholar 

  18. 18.

    N. A. Belova, O. N. Ermakova, A. M. Ermakov, et al., Environmentalist 27, 411 (2007).

    Article  Google Scholar 

  19. 19.

    V. V. Novikov and A. V. Karnaukhov, Bioelectromagnetics 18(1), 25 (1997).

    Article  Google Scholar 

  20. 20.

    V. O. Ponomarev, V. V. Novikov, A. V. Karnaukhov, and O. A. Ponomarev, Biofizika 53(2), 197 (2008).

    Google Scholar 

  21. 21.

    A. L. Buchachenko, Chemical Polarization of Electrons and Nuclei (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  22. 22.

    G. M. Zhidomirov, P. V. Schastnev, and N. D. Chuvylkin, Quantum-Chemical Calculations of Magnetic Resonance Parameters. Free Radicals (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  23. 23.

    V. F. Mikhailov, V. K. Mazurik, and E. B. Burlakova, Radiats. Biol. Radioekol. 43(1), 5 (2003).

    Google Scholar 

  24. 24.

    Yu. A. Vladimirov, Soros. Obraz. Zh. 6(9), 2 (2000).

    Google Scholar 

  25. 25.

    M. M. Potselueva, A. V. Pustovidko, Yu. V. Evtodienko, et al., Dokl. Akad. Nauk 359(3), 415 (1998).

    Google Scholar 

  26. 26.

    V. V. Novikov and E. E. Fesenko, Biofizika 46(2), 235 (2001).

    Google Scholar 

  27. 27.

    V. N. Kazachenko, O. N. Deryugina, K. V. Kochetkov, and E. E. Fesenko, Biofizika 44(5), 796 (1999).

    Google Scholar 

  28. 28.

    L. M. Apasheva, A. V. Lobanov, and G. G. Komisarov, Dokl. RAN 406(1), 108 (2006).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. O. Ponomarev.

Additional information

Original Russian Text © V.O. Ponomarev, V.V. Novikov, 2009, published in Biofizika, 2009, Vol. 54, No. 2, pp. 235–241.

Editor’s Note: This text meticulously reproduces the original Russian publication, so that the reader may more clearly recognize the major problems with this line of scholarly activity. A.G.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ponomarev, V.O., Novikov, V.V. Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species. BIOPHYSICS 54, 163–168 (2009). https://doi.org/10.1134/S0006350909020079

Download citation

Key words

  • weak magnetic field
  • radicals
  • oxygen
  • biological effects
  • reactive oxygen species