Advertisement

Biophysics

, Volume 54, Issue 2, pp 163–168 | Cite as

Effect of low-frequency alternating magnetic fields on the rate of biochemical reactions proceeding with formation of reactive oxygen species

  • V. O. Ponomarev
  • V. V. Novikov
Molecular Biophysics

Abstract

It is (theoretically) shown by an example of the reaction of a radical with an oxygen molecule that the alternating component of a combined weak magnetic field affects the rate constants of chemical reactions. The mechanism of transduction of a weak magnetic perturbation from the primary receptor of the field to experimentally observed biological effects is followed. It is stated that the external magnetic field alters the initial population of energy levels. The magnitude of these changes depends on the field parameters. The exposure to an alternating field with proper parameters can substantially increase the concentration of reactive oxygen species in biological systems. By controlling their concentration by means of weak magnetic field, it is possible to affect the key links of metabolism.

Key words

weak magnetic field radicals oxygen biological effects reactive oxygen species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Berman, L. Chacon, D. House, et al., Bioelectromagnetics 11(2), 169 (1990).CrossRefGoogle Scholar
  2. 2.
    C. F. Blackman, S. G. Benane, and D. E. House, Bioelectromagnetics 22(2), 122 (2001).CrossRefGoogle Scholar
  3. 3.
    N. A. Belova and V. V. Lednev, Biofizika 46(1), 122 (2001).Google Scholar
  4. 4.
    J. Juutilainen, E. Laara, and K. Saali, Int. J. Radiat. Biol. Relative Studies Phys. Chem. Med. 52(5), 787 (1987).CrossRefGoogle Scholar
  5. 5.
    R. P. Liburdy, T. R. Sloma, R. Sokolic, and P. Yaswen, J. Pineal Res. 14, 89 (1993).CrossRefGoogle Scholar
  6. 6.
    M. A. Persinger, L. L. Cook, and S. A. Koren, Int. J. Neurosci. 100(1/4), 107 (1999).Google Scholar
  7. 7.
    V. V. Novikov, Biophysics 49(Suppl. 1), S43 (2004).Google Scholar
  8. 8.
    N. V. Bobkova, V. V. Novikov, N. I. Medvinskaya, et al., Biophysics 50(Suppl. 1), S2 (2005).Google Scholar
  9. 9.
    V. V. Novikov, V. O. Ponomarev, and E. E. Fesenko, Biophysics 50(Suppl. 1), S110 (2005).Google Scholar
  10. 10.
    V. V. Novikov, N. I. Novikova, and A. K. Kachan, Biofizika 41(4), 934 (1996).Google Scholar
  11. 11.
    V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics (in press).Google Scholar
  12. 12.
    V. V. Novikov and M. N. Zhadin, Biofizika 39(1), 41 (1994).Google Scholar
  13. 13.
    A. Pazur, Biomagnetic Res. Technol. 2, 8 (2004).CrossRefADSGoogle Scholar
  14. 14.
    N. Comisso, E. Del Giudice, A. De Ninno, et al., Bioelectromagnetics 27(1), 16 (2006).CrossRefGoogle Scholar
  15. 15.
    M. N. Zhadin, V. V. Novikov, F. S. Barnes, and N. F. Pergola, Bioelectromagnetics 19(1), 41 (1998).CrossRefGoogle Scholar
  16. 16.
    A. L. Buchachenko, D. A. Kuznetsov, and V. L. Berdinskii, Biofizika 51(3), 545 (2006).Google Scholar
  17. 17.
    V. V. Lednev, A. K. Srebnitskaya, E. N. Il’yasova, et al., Dokl. Akad. Nauk 348(6), 830 (1996).Google Scholar
  18. 18.
    N. A. Belova, O. N. Ermakova, A. M. Ermakov, et al., Environmentalist 27, 411 (2007).CrossRefGoogle Scholar
  19. 19.
    V. V. Novikov and A. V. Karnaukhov, Bioelectromagnetics 18(1), 25 (1997).CrossRefGoogle Scholar
  20. 20.
    V. O. Ponomarev, V. V. Novikov, A. V. Karnaukhov, and O. A. Ponomarev, Biofizika 53(2), 197 (2008).Google Scholar
  21. 21.
    A. L. Buchachenko, Chemical Polarization of Electrons and Nuclei (Nauka, Moscow, 1974) [in Russian].Google Scholar
  22. 22.
    G. M. Zhidomirov, P. V. Schastnev, and N. D. Chuvylkin, Quantum-Chemical Calculations of Magnetic Resonance Parameters. Free Radicals (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  23. 23.
    V. F. Mikhailov, V. K. Mazurik, and E. B. Burlakova, Radiats. Biol. Radioekol. 43(1), 5 (2003).Google Scholar
  24. 24.
    Yu. A. Vladimirov, Soros. Obraz. Zh. 6(9), 2 (2000).Google Scholar
  25. 25.
    M. M. Potselueva, A. V. Pustovidko, Yu. V. Evtodienko, et al., Dokl. Akad. Nauk 359(3), 415 (1998).Google Scholar
  26. 26.
    V. V. Novikov and E. E. Fesenko, Biofizika 46(2), 235 (2001).Google Scholar
  27. 27.
    V. N. Kazachenko, O. N. Deryugina, K. V. Kochetkov, and E. E. Fesenko, Biofizika 44(5), 796 (1999).Google Scholar
  28. 28.
    L. M. Apasheva, A. V. Lobanov, and G. G. Komisarov, Dokl. RAN 406(1), 108 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations