Skip to main content
Log in

Composition of titin isoforms of skeletal and cardiac muscles in pathologies

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An electophoretic study of changes in composition of titin isoforms in human and rat skeletal and cardiac muscles is carried out. A more considerable decrease in the content of intact titin isoforms was observed than in the content of N2A-titin in the dorsal muscle of patients with the “stiff-person syndrome” and in m. soleus of humans and rats during development of “muscle hypogravity syndrome” and than in the content of N2BA- and N2B-titins in hypertrophic heart of spontaneously hypertensive rats. The relation between reduction of titin content in m. soleus and the increase of time the rats were in conditions of simulated microgravity is revealed. On electrophoregrams of left ventricle myocardium of patients with terminal stage of dilated cardiomyopathy the intact titin and N2BA-titin were absent and a considerable decrease in the content of N2B-titin was observed. This could be the consequence of the terminal stage of pathology. It follows that development of the diseases is accompanied by a greater destruction of intact titin than of its other forms which may be important for diagnostics of pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCM:

dilated cardiomyopathy

References

  1. N. Fukuda, H. L. Granzier, S. Ishiwata, and S. Kurihara, J. Physiol. Sci. 58(3), 151 (2008).

    Article  Google Scholar 

  2. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biofizika 52(6), 1020 (2007).

    Google Scholar 

  3. I. Makarenko, C. Opitz, M. Leake, et al., Curc. Res. 95, 708 (2004).

    Article  Google Scholar 

  4. S. Nagueh, G. Shah, Y. Wu, et al., Circulation 110, 155 (2004).

    Article  Google Scholar 

  5. Y. Wu, S. Bell, K. Trombitas, et al., Circulation 106, 1384 (2002).

    Article  Google Scholar 

  6. C. Neagoe, M. Kulke, F. Del Monte, et al., Circulation 106, 1333 (2002).

    Article  Google Scholar 

  7. C. M. Warren, M. C. Jordan, K. P. Roos, et al., Cardiovascular Research 59, 86 (2003).

    Article  Google Scholar 

  8. I. Morano, K. Hadicke, S. Grom, et al., J. Mol. Cell. Cardiol. 26, 361 (1994).

    Article  Google Scholar 

  9. I. V. Makarenko, M. D. Shpagina, Z. I. Vishnevskaya, and Z. A. Podlubnaya, Biofizika 47(4), 706 (2002).

    Google Scholar 

  10. K. S. Litvinova, I. M. Vikhlyantsev, I. B. Kozlovskaya, et al., J. Gravit. Physiol. 11(2), 131 (2004).

    Google Scholar 

  11. T. Toursel, L. Stevens, H. Granzier, and Y. Mounier, J. Appl. Physiol. 92, 1465 (2002).

    Google Scholar 

  12. B. S. Shenkman, T. L. Nemirovskaya, I. M. Vikhlyantsev, et al., J. Gravit. Physiol. 10(1), 53 (2003).

    Google Scholar 

  13. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biofizika 51(5), 951 (2006).

    Google Scholar 

  14. Z. A. Podlubnaya, I. M. Vikhlyantsev, A. M. Mukhina, et al., Biofizika 49(3), 424 (2004).

    Google Scholar 

  15. B. S. Shekman, Z. A. Podlubnaya, and I. M. Vikhlyantsev, Biofizika 49(5), 881 (2004).

    Google Scholar 

  16. I. M. Vikhlyantsev, Z. A. Podlubnaya, and I. B. Kozlovskaya, Doklady RAN 395(6), 828 (2004).

    Google Scholar 

  17. K. Maruyama, S. Kimura, H. Yoshidomi, et al., J. Biochem. 95, 1423 (1984).

    Google Scholar 

  18. K. Wang, R. McCarter, and J. Wright, Proc Natl. Acad. Sci. USA 88, 7101 (1991).

    Article  ADS  Google Scholar 

  19. H. Granzier and K. Wang, Electrophoresis 14, 56 (1993).

    Article  Google Scholar 

  20. M. Kruger, J. Wright, and K. Wang, J. Cell Biol. 115(1), 97 (1991).

    Article  Google Scholar 

  21. D. O. Furst, M. Osborn, R. Nave, and K. Weber, J. Cell Sci. 94, 119 (1988).

    Google Scholar 

  22. D. O. Furst, R. Nave, M. Osborn, and K. Weber, J. Cell Biol. 106, 1563 (1988).

    Article  Google Scholar 

  23. A. Freiburg, K, Trombitas, W. Hell, et al., Curc. Res. 86, 1114 (2000).

    Google Scholar 

  24. M. L. Bang, T. Centner, F. Fornoff, et al., Circ. Res. 89, 1065 (2001).

    Article  Google Scholar 

  25. M. L. Greaser, M. Berri, C. M. Warren, and P. E. Mozdziak, J. Musc. Res. Cell Motil. 23, 473 (2003).

    Article  Google Scholar 

  26. M. L. Greaser, P. R. Krzesinski, C. M. Warren, et al., J. Musc. Res. Cell Motil. 26, 325 (2005).

    Article  Google Scholar 

  27. O. Cazorla, A. Freiburg, M. Helmes, et al., Circ. Res. 86, 59 (2000).

    Google Scholar 

  28. S. Lahmers, Y. Wu, D. R. Call, et al., Circ. Res. 94, 505 (2004).

    Article  Google Scholar 

  29. K. Maruyama, Int. Rev. Cytol. 104, 81 (1986).

    Article  Google Scholar 

  30. I. M. Vikhlyantsev, Z. A. Podlubnaya, E. V. Karaduleva, et al., Doklady AN 417(3), 403 (2007).

    Google Scholar 

  31. S. Lange, F. Xiang, A. Yakovenko, et al., Science 308, 1599 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Vikhlyantsev.

Additional information

Original Russian Text © I.M. Vikhlyantsev, Z.A. Podlubnaya, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 1058–1065.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikhlyantsev, I.M., Podlubnaya, Z.A. Composition of titin isoforms of skeletal and cardiac muscles in pathologies. BIOPHYSICS 53, 592–597 (2008). https://doi.org/10.1134/S0006350908060237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060237

Key words

Navigation