Skip to main content
Log in

The role of phosphoinositide-3-kinase in the control of shape and directional movement of the Physarum polycephalum plasmodium

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of wortmannin and LY294002, specific inhibitors of phosphoinositide-3-kinase, on the shape, locomotive behavior, and glucose chemotaxis were studied using the Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the self-oscillatory mode of locomotive behavior. Both inhibitors were shown to cause a reduction in the plasmodium frontal edge and a decrease in the efficiency of mass transfer during migration. They also suppressed the chemotaxis towards glucose and eliminated the characteristic changes in self-oscillatory behavior normally observed in response to the treatment of the whole plasmodium with glucose. The manifestation of these effects depended on the inhibitor concentration, treatment duration, and size of plasmodium. The involvement of phosphoinositide-3-kinase in formation of the frontal edge and control of P. polycephalum plasmodium chemotaxis suggests that the correlation of polar shape and directional movement of amoeboid cells with the distribution of phosphoinositides in the plasma membrane has a universal nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PIP3 :

phosphatidylinositol-3,4,5-triphosphate

PIP2 :

phosphatidylinositol-4,5-diphosphate

PI3K:

class I phosphoinositide-3-kinase

PTEN:

phosphatidylinositol-3-phosphatase and tensin homolog

PLC:

phospholipase C

PH:

domains, pleckstrin homology domains

GFP:

green fluorescent protein

References

  1. K. M. Torgersen, S. Kim, and J. E. Dixon, in Handbook of Cell Signaling, Ed. by R. A. Bradshaw and E. A. Dennis (Acad. Press, London, Oxford, New York, San Diego, 2004), Vol. 2, pp. 143–146.

    Google Scholar 

  2. C. A. Parent, B. J. Blacklock, W. M. Froehlich, et al., Cell 95, 81 (1998).

    Article  Google Scholar 

  3. E. Hirsch, V. L. Katanaev, C. Garlanda, et al., Science 287, 1049 (2000).

    Article  ADS  Google Scholar 

  4. G. Servant, O. D. Weiner, P. Herzmark, et al., Science 287, 1037 (2000).

    Article  ADS  Google Scholar 

  5. S. Funamoto, K. Milan, R. Meili, and R. A. Firtel, J. Cell Biol. 153, 795 (2001).

    Article  Google Scholar 

  6. M. Iijima and P. N. Devreotes, Cell 109, 599 (2002).

    Article  Google Scholar 

  7. M. Iijima, Y. E. Huang, H. R. Luo, et al., J. Biol. Chem. 279, 16603 (2004).

    Article  Google Scholar 

  8. Zh. L. Bliokh and V. V. Smolyaninov, Biofizika 22(4), 631 (1977).

    Google Scholar 

  9. S. I. Beylina, N. B. Matveeva, and V. A. Teplov, Biophysics 41(1), 137 (1996).

    Google Scholar 

  10. M. Fleischer and K. E. Wohlfarth-Bottermann, Cytobiologie 10, 339 (1975).

    Google Scholar 

  11. K. V. Wolf, W. Stockem, and K. E. Wohlfarth-Bottermann, Cell Tissue Res. 217, 479 (1981).

    Article  Google Scholar 

  12. S. I. Beylina, M. Cieslawska, B. Hrebenda, and Z. Baranowski, Acta Protozoologica 28, 165 (1989).

    Google Scholar 

  13. H. Satoh, T. Ueda, and Y. Kobatake, Exp. Cell Res. 156, 79 (1985).

    Article  Google Scholar 

  14. G. Giannone, B. J. Dubin-Thaler, H.-G. Dobereiner, et al., Cell 116, 431 (2004).

    Article  Google Scholar 

  15. P. N. Devreotes and C. Janetopopoulos, J. Biol. Chem. 287, 20445 (2003).

    Article  Google Scholar 

  16. W. G. Camp, Bull. Torrey Bot. Club 63, 205 (1936).

    Article  Google Scholar 

  17. N. B. Matveeva, A. A. Klyueva, V. A. Teplov, and S. I. Beilina, Biol. Membrany 20(1), 66 (2003).

    Google Scholar 

  18. L. Rakoczy, Ber. Deutsch. Bot. Ges. 86, 141 (1973).

    Google Scholar 

  19. E. B. Ridgway and C. H. Durham, J. Cell Biol. 69, 218 (1976).

    Article  Google Scholar 

  20. N. B. Matveeva, S. I. Beilina, V. A. Teplov, and D. B. Lairand, in Nonmuscle Motility Systems, Ed. by G. R. Ivanitsky (Nauka. Moscow, 1981), pp. 147–155 [in Russian].

    Google Scholar 

  21. N. B. Matveeva, S. I. Beilina, and V. A. Teplov, Biol. Membrany 23(4), 306 (2006).

    Google Scholar 

  22. H.-J. Liao and G. Carpenter, in Handbook of Cell Signaling, Ed. by R. A. Bradshaw and E. A. Dennis (Acad. Press, London, Oxford, New York, San Diego, 2004), vol. 2, pp. 5–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Beilina.

Additional information

Original Russian Text © N.B. Matveeva, S.I. Beilina, V.A. Teplov, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 986–992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveeva, N.B., Beilina, S.I. & Teplov, V.A. The role of phosphoinositide-3-kinase in the control of shape and directional movement of the Physarum polycephalum plasmodium. BIOPHYSICS 53, 533–538 (2008). https://doi.org/10.1134/S0006350908060122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060122

Key words

Navigation