Skip to main content
Log in

Caldesmon affects actin organization at the leading edge and inhibits cell migration

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FCS:

fetal calf serum

shRNA:

short hairpin RNA

GFP:

green fluorescent protein

PBS:

phosphate buffered saline

CPFB:

cytoskeleton protein fixation buffer

GAPDH:

glyceraldehyde phosphate dehydrogenase

References

  1. A. J. Ridley, M. A. Schwartz, E. Burridge, et al., Science 302(5651), 1704 (2003).

    Article  ADS  Google Scholar 

  2. D. A. Lauffenburger and A. F. Horwitz, Cell 84(3), 359 (1996).

    Article  Google Scholar 

  3. J. A. Theriot and T. J. Mitchison, Nature 352(6331), 126 (1991).

    Article  ADS  Google Scholar 

  4. L. P. Cramer, T. J. Mitchison, and J. A. Theriot, Curr. Opin. Cell. Biol. 6(1), 82 (1994).

    Article  Google Scholar 

  5. J. V. Small and G. P. Resch, Curr. Opin. Cell. Biol. 17(5), 517 (2005).

    Article  Google Scholar 

  6. T. J. Mitchison and L. P. Cramer, Cell 84(3), 371 (1996).

    Article  Google Scholar 

  7. L. M. Machesky and K. L. Gould, Curr. Opin. Cell. Biol. 11(1), 117 (1999).

    Article  Google Scholar 

  8. A. Bershadsky, Trends Cell. Biol. 14(11), 589 (2004).

    Article  Google Scholar 

  9. T. D. Pollard and G. G. Borisy, Cell 112(4), 453 (2003).

    Article  Google Scholar 

  10. S. J. Winder and K. P. Ayscough, J. Cell. Sci. 118(4), 651 (2005).

    Article  Google Scholar 

  11. A. V. Vorotnikov, M. A. Krimskiy and V. P. Shirinskiy, Biochem. 67, 1587 (2002).

    Google Scholar 

  12. M. J. Greenberg, C. L. Wang, W. Lehman, and J. R. Moore, Cell. Motil. Cytoskeleton 65(2), 156 (2008).

    Article  Google Scholar 

  13. R. Dabrowska, N. Kulikova, and M. Gagola, Protoplasma 224(1–2), 1 (2004).

    Google Scholar 

  14. J. Kordowska, R. Huang, and C. L. A. Wang, J. Biomed. Sci. 13(2), 159 (2006).

    Article  Google Scholar 

  15. D. M. Helfman, E. T. Levy, C. Berthier, et al., Mol. Biol. Cell 10(10), 3097 (1999).

    Google Scholar 

  16. R. Eves, B. A. Webb, S. Zhou, and A. S. Mak, J. Cell. Sci. 119(9), 1691 (2006).

    Article  Google Scholar 

  17. T. Mirzapoiazova, I. A. Kolosova, L. Romer, et al., J. Cell. Physiol. 203(3), 520 (2005).

    Article  Google Scholar 

  18. K. S. Warren, D. C. Shutt, J. P. McDermott, et al., Cell. Motil. Cytoskeleton. 34(3), 215 (1996).

    Article  Google Scholar 

  19. R. Ishikawa, S. Yamashiro, and F. Matsumura, J. Biol. Chem. 264(13), 7490 (1989).

    Google Scholar 

  20. R. Ishikawa, S. Yamashiro, K. Kohama, and F. Matsumura, J. Biol. Chem. 273(41), 26991 (1998).

    Article  Google Scholar 

  21. Y. Yamakita, F. Oosawa, S. Yamashiro, and F. Matsumura, J. Biol. Chem. 278(20), 17937 (2003).

    Article  Google Scholar 

  22. V. B. Patchell, A. V. Vorotnikov, Y. Gao, et al., Biochim. Biophys. Acta 1596(1), 121 (2002).

    Google Scholar 

  23. R. Huang, L. Li, H. Guo, and C. L. Wang, Biochemistry 42(9), 2513 (2003).

    Article  Google Scholar 

  24. E. A. Goncharova, V. P. Shirinsky, A. Y. Shevelev, et al., FEBS Lett. 497(2–3), 113 (2001).

    Article  Google Scholar 

  25. E. A. Goncharova, A. V. Vorotnikov, E. 0. Gracheva, et al., Biol. Chem. 383(1), 115 (2002).

    Article  Google Scholar 

  26. Z. Gu, J. Kordowska, G. L. Williams, et al., Exp. Cell. Res. 313(5), 849 (2007).

    Article  Google Scholar 

  27. R. D. Eppinga, Y. Li, J. L. Lin, et al., Cell. Motil. Cytoskeleton 63(9), 543 (2006).

    Article  Google Scholar 

  28. U. K. Laemmli, Nature 227(5259), 680 (1970).

    Article  ADS  Google Scholar 

  29. W. Schaffner and C. Weissmann, Anal. Biochem. 56(2), 502 (1973).

    Article  Google Scholar 

  30. H. Towbin, T. Staehelin, and J. Gordon, Proc. Natl. Acad. Sci. USA 76(9), 4350 (1979).

    Article  ADS  Google Scholar 

  31. K. G. Birukov, V. P. Shirinsky, A. V. Vorotnikov, and N. B. Gusev, FEBS Lett. 262(2), 263 (1990).

    Article  Google Scholar 

  32. T. Morita, T. Mayanagi, T. Yoshio, and K. Sobue, J. Biol. Chem. 282(11), 8454 (2007).

    Article  Google Scholar 

  33. B. T. Gabelt, Y. Hu, and J. L. Vittitow, Exp. Eye Res. 82(6), 935 (2006).

    Article  Google Scholar 

  34. A. D. Bershadsky, N. Q. Balaban, and B. Geiger, Annu. Rev. Cell Dev. Biol. 19, 677 (2003).

    Article  Google Scholar 

  35. J. Kordowska, T. Hetrick, L. P. Adam, and C. L. A. Wang, Exp. Cell Res. 312(2), 95 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vorotnikov.

Additional information

Original Russian Text © T.V. Kudryashova, P.N. Rutkevich, A.Ya. Shevelev, T.N. Vlasik, A.V. Vorotnikov, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 978–985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashova, T.V., Rutkevich, P.N., Shevelev, A.Y. et al. Caldesmon affects actin organization at the leading edge and inhibits cell migration. BIOPHYSICS 53, 527–532 (2008). https://doi.org/10.1134/S0006350908060110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060110

Key words

Navigation