Skip to main content
Log in

Effect of mutations imitating the phosphorylation by TRPM7 kinase on the function of the N-terminal domain of tropomodulin

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It has been shown that tropomodulin 1 is phosphorylated at serine and threonine residues by TRPM7 kinase. The phosphorylation sites for TRPM7 in the N-terminal functional domain of tropomodulin 1 have been identified, which include tropomyosin-binding and actin-capping regions. It has been found that the phosphorylation-mimicking mutation T54E resulted in the loss of capping ability of the N-terminal tropomodulin domain; however, its tropomyosin-binding ability did not change. We further hypothesize that the phosphorylation of tropomodulin by TRPM7 kinase may play a role in the regulation of the dynamics of actin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

SDS:

sodium dodecyl sulfate

PAAG:

polyacrylamid gel

References

  1. C. G. dos Remedios, D. Chhabra, M. Kekic, et al., Physiol. Rev. 83, 433 (2003).

    Google Scholar 

  2. V. M. Fowler, J. Biol. Chem. 26212, 792 (1987).

    Google Scholar 

  3. A. Weber, C. R. Pennise, G. G. Babcock, and V. M. Fowler, J. Cell Biol. 127, 1627 (1994).

    Article  Google Scholar 

  4. A. Weber, C. R. Pennise, and V. M. Fowler, J. Biol. Chem. 274, 34637 (1999).

    Article  Google Scholar 

  5. R. Littlefield, A. Almenar-Queralt, and V. M. Fowler, Nat. Cell Biol. 3, 544 (2001).

    Article  Google Scholar 

  6. A. S. McElhinny, C. Schwach, M. Valichnac, et al., J. Cell Biol. 170, 947 (2005).

    Article  Google Scholar 

  7. K. L. Tritz-Six, P. R. Cox, R. S. Fischer, et al., J. Cell Biol. 163, 1033 (2003).

    Article  Google Scholar 

  8. A. Watakabe, R. Kobayashi, and D. M. Helfman, J. Cell Sci. 109, 2299 (1996).

    Google Scholar 

  9. A. Almenar-Queralt, A. Lee, C. A. Confley, et al., J. Biol. Chem. 274, 28466 (1999).

    Article  Google Scholar 

  10. C. A. Confley, K. L. Fritz-Six, A. Almenar-Queralt, and V. M. Fowler, Genomics 73, 127 (2001).

    Article  Google Scholar 

  11. A. S. Fujisawa, A. Kostyukova, and Y. Maeda, FEBS Lett. 498, 67 (2001).

    Article  Google Scholar 

  12. A. S. Kostyukova, E. I. Tiktopulo, and Y. Maeda, Biophys. J. 81, 345 (2001).

    Article  Google Scholar 

  13. I. Krieger, A. Kostyukova, A. Yamashita, et al., Biophys. J. 83, 2716 (2002).

    Article  ADS  Google Scholar 

  14. A. Kostyukova, K. Maeda, A. Yamashita, et al., Eur. J. Biochem. 267, 6470 (2000).

    Article  Google Scholar 

  15. N. J. Greenfield, A. S. Kostyukova, and S. E. Hitchcock-DeGregori, Biophys. J. 88, 372 (2005).

    Article  Google Scholar 

  16. A. S. Kostyukova, A. Choy, and B. A. Rapp, Biochemistry 45, 12068 (2006).

    Article  Google Scholar 

  17. A. S. Kostyukova and S. E. Hitchcock-DeGregori, J. Biol. Chem. 279, 5066 (2004).

    Article  Google Scholar 

  18. K. L. Weber, J. Moyer, and V. Fowler, Mol. Biol. Cell 15 (2004).

  19. L. V. Riazanova, K. S. Pavur, A. N. Petrov, et al., Mol. Biol. (Mosk) 35, 321 (2001).

    Google Scholar 

  20. L. V. Riazanova, M. V. Dorovkov, A. Ansari, and A. G. Riazanov, J. Biol. Chem. 279, 3708 (2004).

    Article  Google Scholar 

  21. A. G. Riazanov, K. S. Pavur, and M. V. Dorovkov, Curr. Biol. 9, R43 (1999).

    Article  Google Scholar 

  22. D. Drennan and A. G. Riazanov, Prog. Biophys. Mol. Biol. 85, 1 (2004).

    Article  Google Scholar 

  23. R. Penner and A. Fleig, Handb. Exp. Pharmacol. 313 (2007).

  24. M. V. Dorovkov and A. G. Riazanov, J. Biol. Chem. 279, 50643 (2004).

    Article  Google Scholar 

  25. M. V. Dorovkov, A. N. Nikonorova, K. A. Astanina, et al., Abstract of Cell Biology Meeting (2006).

  26. K. Clark, M. Langeslag, B. Van Leeuwen, et al., EMBO J. 25, 290 (2006).

    Article  Google Scholar 

  27. F. W. Studier, Protein Expr. Purif. 41, 207 (2005).

    Article  Google Scholar 

  28. J. A. Spudich and S. Watt, J. Biol. Chem. 246, 4866 (1971).

    Google Scholar 

  29. T. Kouyama and K. Mihashi, Eur. J. Biochem. 114, 33 (1981).

    Article  Google Scholar 

  30. J. A. Cooper, S. B. Walker, and T. D. Pollard, J. Muscle Res. Cell Motil. 4, 253 (1983).

    Article  Google Scholar 

  31. U. K. Laemmli, Nature 227, 680 (1970).

    Article  ADS  Google Scholar 

  32. H. Edelhoch, Biochemistry 6, 1948 (1967).

    Article  Google Scholar 

  33. G. D. Fasman, Practical Handbook of Biochemistry and Molecular Biology (CRC Press, Boca Raton, Florida, 1989).

    Google Scholar 

  34. N. J. Greenfield, Y. J. Huang, T. Palm, et al., J. Mol. Biol. 312, 833 (2001).

    Article  Google Scholar 

  35. A. Kostyukova, B. Rapp, A. Choy, et al., Biochemistry 44, 4905 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Dorovkov, S.N. Beznosov, S. Shah, L. Kotlyanskaya, A.S. Kostyukova, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 943–949.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorovkov, M.V., Beznosov, S.N., Shah, S. et al. Effect of mutations imitating the phosphorylation by TRPM7 kinase on the function of the N-terminal domain of tropomodulin. BIOPHYSICS 53, 500–504 (2008). https://doi.org/10.1134/S0006350908060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060055

Key words

Navigation