Skip to main content
Log in

Optical trap as a tool for studying motor proteins

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The review briefs the optical trap method, a modern experimental tool based on the recently discovered ability of light to trap and hold micron and submicron particles in a focused beam. The physical principle underlying the optical trap and the opportunities that it provides for studying the molecular nature of biological motility are considered. Several studies into the physical characteristics and functions of single motor protein molecules performed using the optical trap and recording nanometer displacements and piconewton forces are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NEM:

N-ethylmaleimide

HMM:

heavy meromyosin

AOM:

acoustooptical modulator

References

  1. A. F. Huxley and R. I. Simmons, Nature 218, 59P (1971).

    ADS  Google Scholar 

  2. V. Lombardi, G. Piazzesi, and M. Linari, Nature 355, 638 (1992).

    Article  ADS  Google Scholar 

  3. I. Dobbie, M. Linary, G. Piazzessi, et al., Nature 396, 383 (1998).

    Article  Google Scholar 

  4. L. E. Ford, A. F. Huxley, and R. M. Simmons, J. Physiol. 269, 441 (1977).

    Google Scholar 

  5. H. E. Huxley and W. Brown, J. Mol. Biol. 30, 384 (1967).

    Google Scholar 

  6. M. Irving, V. Lombardi, M. A. Ferenczi, and G. Piazzessi, Nature 357, 156 (1992).

    Article  ADS  Google Scholar 

  7. S. Y. Bershitsky, A. K. Tsaturyan, O. N. Bershitskaya, et al., Nature 388, 186 (1997).

    Article  Google Scholar 

  8. C. L. Berger and D. D. Thomas, Biochemistry 32, 3812 (1993).

    Article  Google Scholar 

  9. E. C. Svensson and D. D. Thomas, Biophys. J. 50, 999 (1986).

    Article  Google Scholar 

  10. M. Walker, X.-Z. Zhang, W. Jiang, et al., Proc. Natl. Acad. Sci. USA 96, 465 (1999).

    Article  ADS  Google Scholar 

  11. W. Kabsch, H. G. Mannherz, D. Suck, et al., Nature 347, 37 (1990).

    Article  ADS  Google Scholar 

  12. I. Rayment, W. R. Rypniewski, K. Schmidt-Base, et al., Science 261, 50 (1993).

    Article  ADS  Google Scholar 

  13. I. Rayment, H. M. Holden, M. Whittaker, et al., Science 261, 58 (1993).

    Article  ADS  Google Scholar 

  14. A. Houdesse and H. L. Sweeney, Curr. Opin. Struct. Biol. 11, 182 (2001).

    Article  Google Scholar 

  15. S. J. Kron and J. A. Spudich, Proc. Natl. Acad. Sci. USA 83, 6272 (1986).

    Article  ADS  Google Scholar 

  16. Y. Harada, A. Noguchi, A. Kishino, and T. Yanagida, Nature 326, 805 (1987).

    Article  ADS  Google Scholar 

  17. L. V. Nikitina and L. B. Katsnel’son, Biokhimiya 73, 178 (2008).

    Google Scholar 

  18. A. Kishino and T. Yanagida, Nature 334, 74 (1988).

    Article  ADS  Google Scholar 

  19. S. Sugiura, H. Yamashita, M. Sata, et al., Biochim. Biophys. Acta 1231, 69 (1995).

    Article  Google Scholar 

  20. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).

    Article  ADS  Google Scholar 

  21. A. Ashkin and J. M. Dziedzic, Science 235, 1517 (1987).

    Article  ADS  Google Scholar 

  22. A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).

    Article  ADS  Google Scholar 

  23. E. Almaas and I. Brevik, J. Opt. Soc. Am. B 12, 2429 (1995).

    Article  ADS  Google Scholar 

  24. J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).

    Article  ADS  Google Scholar 

  25. P. Zemanek, A. Jonas, and M. Liska, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19, 1025 (2002).

    Article  ADS  Google Scholar 

  26. J. T. Finer, R. M. Simmons, and J. A. Spudich, Nature 368, 113 (1994).

    Article  ADS  Google Scholar 

  27. J. E. Molloy, J. E. Burns, J. Kendrick-Jones, et al., Nature 378, 209 (1995).

    Article  ADS  Google Scholar 

  28. H. Tanaka, A. Ishijima, M. Honda, et al., Biophys. J. 75,1886 (1998).

    Article  Google Scholar 

  29. K. Svoboda and S. M. Block, Ann. Rev. Biophys. Biomol. Struct. 23, 247 (1994).

    Article  Google Scholar 

  30. C. Veigel, M. L. Bartoo, D. C. White, et al., Biophys. J. 75, 1424 (1998).

    Article  Google Scholar 

  31. W. Steffen, D. Smith, and J. Sleep, Proc. Natl. Acad. Sci. USA 100, 6434 (2003).

    Article  ADS  Google Scholar 

  32. M. Capitanio, M. Canepari, P. Cacciafesta, et al., Proc. Natl. Acad. Sci. USA 103, 87 (2006).

    Article  ADS  Google Scholar 

  33. Y. Takagi, E. E. Homsher, Y. E. Goldman, and H. Shuman, Biophys. J. 90, 1295 (2006).

    Article  Google Scholar 

  34. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).

    Article  ADS  Google Scholar 

  35. A. M. Lampre, K. Schwaetz, A. d’Labis, et al., Nature 282, 105 (1979).

    Article  ADS  Google Scholar 

  36. J. van der Velden, P. Borgdorff, and G. Stienen, Cell Mol. Life Sci. 55, 788 (1999).

    Article  Google Scholar 

  37. M. A. Ferenczi, S. Y. Bershitsky, N. Koubassova, et al., Structure 13, 131 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Nabiev.

Additional information

Original Russian Text © S.R. Nabiev, D.A. Ovsyannikov, B.Y. Bershitsky, S.Y. Bershitsky, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 929–935.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabiev, S.R., Ovsyannikov, D.A., Bershitsky, B.Y. et al. Optical trap as a tool for studying motor proteins. BIOPHYSICS 53, 488–493 (2008). https://doi.org/10.1134/S0006350908060031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060031

Key words

Navigation