Skip to main content

Some properties of complexes formed by small heat shock proteins with denaturated actin

Abstract

The effects of a recombinant small heat shock protein with an apparent molecular weight of 27 kDa (Hsp27) and both wild type (Hsp27-wt) and S15D, S78D, S82D mutants (Hsp27-3D), which mimic the naturally occurring phosphorylation of this protein, on the thermal denaturation and aggregation of F-actin were studied. It has been shown that at a Hsp27/actin weight ration of 1/4, both Hsp27-wt and Hsp27-3D do not affect the thermal denaturation of F-actin, but efficiently prevent its further aggregation by forming soluble complexes with denatured actin. Formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. Hsp27-wt is known to exist as a high-molecular-weight oligomer, whereas Hsp27-3D forms only small dimers or tetramers. However, the complexes formed by Hsp27-wt and Hsp27-3D with denatured actin did not differ in their size, as measured by dynamic light scattering, and demonstrated the same hydrodynamic radius of 17–18 nm. On the other hand, the sedimentation coefficients of these complexes differed: they ranged 10–45 S in the case of Hsp27-3D and 18–60 S in case of Hsp27-wt. Thus, the initial oligomeric state of Hsp27 does not significantly affect its capacity to form small soluble complexes with denatured actin.

This is a preview of subscription content, access via your institution.

Abbreviations

DLS:

dynamic light scattering

sHSP:

small heat shock proteins

Hsp27:

a small heat shock protein with an apparent molecular weight of 27 kDa

Hsp27-wt:

recombinant Hsp27 of wild type

Hsp27-3D:

Hsp27 with mutations S15D, S78D, and S82D, which mimic its phosphorylation

References

  1. 1.

    V. V. Mikhailova, B. I. Kurganov, A. V. Pivovarova, and D. I. Levitsky, Biokhimiya 71(11), 1550 (2006) [Biochemistry (Moscow) 71 (11), 1261 (2006)].

    Google Scholar 

  2. 2.

    A. V. Pivovarova, V. V. Mikhailova, I. S. Chernik, et al., Biochem. Biophys. Res. Commun. 331, 1548 (2005).

    Article  Google Scholar 

  3. 3.

    N. B. Gusev, N. V. Bogacheva, and S. B. Marston, Biokhimiya 67(5), 613 (2002) [Biochemistry (Moscow) 67 (5), 511 (2002)].

    Google Scholar 

  4. 4.

    M. Halsbeck, Cell Mol. Life Sci. 59, 1649 (2002).

    Article  Google Scholar 

  5. 5.

    U. Jakob, M. Gaestel, K. Engel, and J. Buchner, J. Biol. Chem. 268, 1517 (1993).

    Google Scholar 

  6. 6.

    R. Shashidharamurthy, H. A. Koteiche, J. Dong, and H. S. McHaourab, J. Biol. Chem. 280, 5281 (2005).

    Article  Google Scholar 

  7. 7.

    B. Lelj-Garolla and A. G. Mauk, J. Biol. Chem. 281, 8169 (2009).

    Article  Google Scholar 

  8. 8.

    J. Huot, F. Houle, D. R. Spitz, and J. Landry, Cancer Res. 56, 273 (1996).

    Google Scholar 

  9. 9.

    A. L. Bryantsev, S. A. Loktionova, and O. P. Ilyinskaya, Cell Stress Chaperones 7, 146 (2002).

    Article  Google Scholar 

  10. 10.

    B. N. Singh, K. S. Rao, T. Ramakrishna, et al., J. Mol. Biol. 366, 756 (2007).

    Article  Google Scholar 

  11. 11.

    T. Rogalla, M. Ehmsperger, X. Preville, et al., J. Biol. Chem. 274, 18947 (1999).

    Article  Google Scholar 

  12. 12.

    B. Lelj-Garolla and A. G. Mauk, J. Mol. Biol. 345, 631 (2005).

    Article  Google Scholar 

  13. 13.

    A. V. Pivovarova, N. A. Chebotareva, I. S. Chernik, et al., FEBS J. 274, 5937 (2007).

    Article  Google Scholar 

  14. 14.

    J. A. Spudich and S. Watt, J. Biol. Chem. 246, 4866 (1971).

    Google Scholar 

  15. 15.

    O. O. Panasenko, M. V. Kim, S. V. Marston, and N. B. Gusev, Eur. J. Biochem. 270, 892 (2003).

    Article  Google Scholar 

  16. 16.

    P. Schuk, Biophys. J. 78, 1606 (2000).

    Article  Google Scholar 

  17. 17.

    J. S. Philo, AAPS J. 8, E564 (2006).

    Article  Google Scholar 

  18. 18.

    T. Stromer, M. Ehmsperger, M. Gaestel, and J. Buchner, J. Biol. Chem. 278, 18015 (2003).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Pivovarova.

Additional information

Original Russian Text © A.V. Pivovarova, N.A. Chebotareva, N.B. Gusev, D.I. Levitsky, 2008, published in Biofizika, 2008, Vol. 53, No. 5, pp. 766–771.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pivovarova, A.V., Chebotareva, N.A., Gusev, N.B. et al. Some properties of complexes formed by small heat shock proteins with denaturated actin. BIOPHYSICS 53, 361–365 (2008). https://doi.org/10.1134/S0006350908050072

Download citation

Key words

  • actin
  • small heat shock proteins
  • differential scanning colorimetry
  • dynamic light scattering
  • analytical ultracentrifugation