, Volume 53, Issue 4, pp 268–272 | Cite as

Influence of ceruloplasmin and lactoferrin on the chlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence

  • O. M. PanasenkoEmail author
  • A. V. Chekanov
  • I. I. Vlasova
  • A. V. Sokolov
  • K. V. Ageeva
  • M. O. Pulina
  • O. S. Cherkalina
  • V. B. Vasil’ev
Molecular Biophysics


We demonstrate that addition of H2O2 to a mixture of myeloperoxidase (MPO), chloride and luminol immediately evokes a short intense flash of chemiluminescence (CL). This flash is diminished in the absence of MPO or chloride, and in the complete system it is suppressed by an MPO inhibitor azide, hypochlorite scavengers taurine or methionine, or an MPO peroxidase-cycle substrate guaiacol. Hence, this CL is mostly due to the MPO halogenation function; a measure of this activity is provided by the integral CL. With three independent methods (CL, taurine chlorination, and peroxidase assay) it is shown that MPO activity is suppressed by ceruloplasmin (Cp). Lactoferrin has no effect either on MPO or on the MPO-Cp complex. It is also shown that peroxidase inhibition by Cp is the stronger the larger is the MPO substrate, which suggests steric hindrances to substrate binding in the MPO-Cp complex. Importantly, the conventional chlorination and peroxidase assays detect MPO inhibition by Cp only at a large excess of the latter, whereas the CL assay reveals it at stoichiometric ratios characteristic of the naturally occurring protein complexes.

Key words

myeloperoxidase ceruloplasmin hypochlorite chemiluminescence protein-protein interactions 



sodium 2,2′-azinobis(3-ethylbenzotriazoline-6-sulfonate










Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Klebanoff, J. Leukoc. Biol. 77, 598 (2005).CrossRefGoogle Scholar
  2. 2.
    V. Vassiliev, Z. L. Harris, and P. Zatta, Brain Research Reviews 49, 633 (2005).CrossRefGoogle Scholar
  3. 3.
    P. F. Levay and M. Viljoen, Haematologica 80, 252 (1995).Google Scholar
  4. 4.
    A. J. Kettle and C. C. Winterbourn, Redox Report 3, 3 (1997).Google Scholar
  5. 5.
    P. G. Furtmüller, U. Burner, and C. Obinger, Biochemistry 37, 17923 (1998).CrossRefGoogle Scholar
  6. 6.
    O. M. Panasenko, J. Arnhold, and V. I. Sergienko, Biol. Membrany 19, 403 (2002).Google Scholar
  7. 7.
    D. I. Pattison and M. J. Davies, Curr. Med. Chem. 13, 3271 (2006).CrossRefGoogle Scholar
  8. 8.
    D. I. Pattison and M. J. Davies, Biochemistry 43, 4799 (2004).CrossRefGoogle Scholar
  9. 9.
    O. Skaff, D. I. Pattison, and M. J. Davies, Chem. Res. Toxicol. 20, 1980 (2007).CrossRefGoogle Scholar
  10. 10.
    O. M. Panasenko, T. Vakhrusheva, V. Tretyakov, et al., Chem. Phys. Lipids 149, 40 (2007).CrossRefGoogle Scholar
  11. 11.
    W. Y. S. Park, K. Suzuki, S. Mumby, et al., Free Rad. Res. 33, 261 (2000).CrossRefGoogle Scholar
  12. 12.
    V. B. Vasil’ev, A. M. Kachurin, and N. V. Soroka, Biokhimiya 53, 2051 (1988).Google Scholar
  13. 13.
    J. M. C. Gutteridge, R. Richmond, and B. Halliwell, FEBS Lett. 112, 269 (1980).CrossRefGoogle Scholar
  14. 14.
    Y. S. Park, K. Suzuki, N. Taniguchi, and J. M. C. Gutteridge, FEBS Lett. 458, 133 (1999).CrossRefGoogle Scholar
  15. 15.
    C. K. Mukhopadhyay, E. Ehrenwald, and P. L. Fox, J. Biol. Chem. 271, 14773 (1996).CrossRefGoogle Scholar
  16. 16.
    A. V. Sokolov, M. O. Pulina, K. V. Ageeva et al., Biokhimiya 72, 506 (2007).Google Scholar
  17. 17.
    M. Segelmark, B. Persson, T. Hellmark, and J. Wieslander, Clin. Exp. Immunol. 108, 167 (1997).CrossRefGoogle Scholar
  18. 18.
    S. V. Griffin, P. T. Chapman, E. A. Lianos, and C. M. Lockwood, Kidney Intern. 55, 917 (1999).CrossRefGoogle Scholar
  19. 19.
    B. N. Borregaard and J. B. Cowland, Blood 89, 3503 (1997).Google Scholar
  20. 20.
    D. Legrand, A. Pierce, E. Elass, et al., Adv. Exp. Med. Biol. 606, 163 (2008).CrossRefGoogle Scholar
  21. 21.
    N. Yu. Govorova, S. N. Lyzlova, B. P. Sharonov, and O. Yu. Yankovskii, Biokhimiya 52, 1670 (1987).Google Scholar
  22. 22.
    O. M. Panasenko, J. Arnhold, Yu. A. Vladinirov, et al., Biofizika 40, 1234 (1995).Google Scholar
  23. 23.
    D. I. Roshchupkin, N. S. Belakina, and M. A. Murina, Biofizika 51, 99 (2006).Google Scholar
  24. 24.
    J. C. Morris, J. Phys. Chem. 70, 3798 (1966).CrossRefGoogle Scholar
  25. 25.
    A. J. Kettle and C. C. Winterbourn, Meth. Enzymol. 233, 502 (1994).CrossRefGoogle Scholar
  26. 26.
    A. V. Sokolov, M. O. Pulina, E. T. Zakharova, et al., Biokhimiya 70, 1231 (2005).Google Scholar
  27. 27.
    E. T. Zakharova, M. M. Shavlovski, M. G. Bass, et al., Arch. Biochem. Biophys. 374, 222 (2000).CrossRefGoogle Scholar
  28. 28.
    I. I. Vlasova, J. Arnhold, A. N. Osipov, and O. M. Panasenko, Biokhimiya 71, 825 (2006).Google Scholar
  29. 29.
    J. Michalowicz, W. Duda, and J. Stufka-Olczyk, Chemosphere 66, 657 (2007).CrossRefGoogle Scholar
  30. 30.
    D. I. Pattison and M. J. Davies, Chem. Res. Toxicol. 14, 1453 (2001).CrossRefGoogle Scholar
  31. 31.
    T. E. Eriksen, J. Lind, and G. Merenyi, J. Chem. Soc. Faraday Trans. 77, 2125 (1981).Google Scholar
  32. 32.
    P. G. Furtmüller, J. Arnhold, W. Jantschko, et al., Biochem. Biophys. Res. Comm. 301, 551 (2003).CrossRefGoogle Scholar
  33. 33.
    A. V. Sokolov, Candidate’s Dissertation in Biology (St. Petersburg, Inst. Exp. Med., 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • O. M. Panasenko
    • 1
    Email author
  • A. V. Chekanov
    • 1
  • I. I. Vlasova
    • 1
  • A. V. Sokolov
    • 2
  • K. V. Ageeva
    • 2
  • M. O. Pulina
    • 2
  • O. S. Cherkalina
    • 2
  • V. B. Vasil’ev
    • 2
  1. 1.Research Institute of Physico-Chemical MedicineMinistry of Health of the Russian FederationMoscowRussia
  2. 2.Institute of Experimental MedicineRussian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations