Skip to main content
Log in

Seasonal variations in myocardial infarctions and the possible biotropic influence of short-period geomagnetic pulsations on the human cardiovascular system

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Analysis of ambulance calls in Moscow during 1979–1981 reporting myocardial infarction (85 700 events), sudden death (71 700 events), and hypertension crises (165 500 events) shows the presence of clear seasonal variations with a deep summer minimum and a winter maximum. The same trend was upon analysis of monthly data on infarction mortality in Bulgaria over 15 years (1970–1985). One of the biotropic factors influencing the human cardiovascular system can be geomagnetic pulsations Pc1, agreeing in frequency with cardiac rhythms. In the seasonal trend, Pc1 have maximum intensity in winter. The comparison of data on ambulance calls in Moscow with the Pc1 observation data catalog revealed that, on ∼70% of days, an abnormally large number of myocardial infarction calls was accompanied by the presence of Pc1; their concurrence was half again the chance expectation. Besides, it was determined that the biotropic influence of magnetic storms in winter was much higher than in summer. One of the plausible reasons of the winter infarction maximum could be seasonal variations in the production of the pineal hormone melatonin, which destabilized the organism and increased its sensitivity to geomagnetic disturbances attended by Pc1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Breus and S. I. Rappoport, Magnetic Storms. Medicobiological and Geophysical Aspects (Sovetskii Sport, Moscow, 2003) [in Russian].

    Google Scholar 

  2. F. I. Komarov, T. K. Breus, S. I. Rappoport, et al., Vestn. AMN, No. 11, 37 (1994).

  3. G. Cornelissen, H. W. Wendt, F. Guillaume, et al., Cronobiologia 21, 151 (1994).

    Google Scholar 

  4. Dzh. Vilarezi, T. K. Breus, L. I. Dorman, et al., Biofizika 40(5), 983 (1995) [Biophysics 40 (5), (1995)].

    Google Scholar 

  5. N. G. Kleimenova and V. A. Troitskaya, Biofizika 37(3), 429 (1992) [Biophysics 37 (3), (1992)].

    Google Scholar 

  6. V. N. Vinogradova, Geomagnetizm I Astronomiya 10(3), 501 (1970) [Geomagnetism and Astronomy 10 (3), (1970)].

    Google Scholar 

  7. E. T. Matveeva, Geomagnetizm I Astronomiya 27(3), 392 (1987) [Geomagnetism and Astronomy 27 (3), (1987)].

    Google Scholar 

  8. P. Ivanova, N. G. Kleimenova, and A. G. Gamburtsev, in Atlas of Time Variations of Natural, Antropogenic, and Social Processes, Vol. 3: Natural and Social Scopes as Parts of Environment and as Influence Objects (Yanus-K, Moscow, 2002), pp. 561–563 [in Russian].

    Google Scholar 

  9. I. E. Ganelina, S. K. Churina, I. A. Nazarov, E. T. Matveeva, Tr. NII Skoroi Pomoshchi im. N.V. Sklifasovskogo 48, 54 (1982).

    Google Scholar 

  10. N. G. Ptitsina, Dzh. Vilarezi, L. I. Dorman, et al., Usp. Fiz. Nauk 168(7), 767 (1993) [Phys. Usp. 168 (7), (1993)].

    Article  Google Scholar 

  11. W. R. Adey, J. Cell Diochem. 51(4), 410 (1993).

    Google Scholar 

  12. W. Horsthemke and R. Lefever, Noise-induced Transitions. Theory and Application in Physics. Chemistry and Biology (Springer-Verlag, Berlin-Tokyo, 1984).

    Google Scholar 

  13. T. K. Breus, G. Cornelissen, C. Bingham, et al., in Proc. Workshop on Computer Methods on Chronobiology and Chronomedicine, Ed. by F. Halberg and H. Watanable (Medical Review, Tokyo, 1992), pp. 203–231.

    Google Scholar 

  14. T. Breus, G. Cornelissen, F. Halberg, and A. E. Levitin, Ann. Geophys. No. 13, 1211 (1995).

    Google Scholar 

  15. T. Breus, F. Halberg, and G. Cornelissen, Biofizika 40(4), 737 (1995) [Biophysics 40 (4), (1995)].

    Google Scholar 

  16. B. I. Balanter, M. A. Hanin, and D. S. Chernavskii, in Introduction to the Mathematical Modeling of Pathologic Processes (Meditsina, Moscow, 1980), pp. 147–162 [in Russian].

    Google Scholar 

  17. Yu. M. Romanovskii, N. V. Stepanova, and D. S. Chernavskii, Mathematical Biophysics (Nauka, Moscow, 1984).

    Google Scholar 

  18. A. T. Winfree, The Geometry of Biological Time. Interdisciplinary Mathematics, Vol. 12 (Springer, Berlin, 2001).

    Google Scholar 

  19. A. Sastre, M. R. Cole, and C Graham, Bioelectromagnetics, No. 19, 98 (1998).

  20. D. A. Savitz, D. P. Liao, A. Sastre, et al., American J. Epidemiology, No. 149, 135 (1999).

  21. N. K. Malinovskaya, F. I. Komarov, S. I Rapoport, et al., in Melatonin in Normality and Pathology, Ed. By F. I. Komarov, S. I Rapoport, N. K. Malinovskaya, and V. N. Anisimova (ID Medpraktika-M, Moscow, 2004), pp. 85–101 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kleimenova.

Additional information

Original Russian Text © N.G. Kleimenova, O.V. Kozyreva, T.K. Breus, S.I. Rapoport, 2007, published in Biofizika, 2007, Vol. 52, No. 6, pp. 1112–1119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleimenova, N.G., Kozyreva, O.V., Breus, T.K. et al. Seasonal variations in myocardial infarctions and the possible biotropic influence of short-period geomagnetic pulsations on the human cardiovascular system. BIOPHYSICS 52, 625–631 (2007). https://doi.org/10.1134/S0006350907060152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907060152

Key words

Navigation