Skip to main content
Log in

The role of structural reorganization in charge carrier transfer in a DNA molecule

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The model proposed for hole transfer in DNA molecules with different configurations allows for the changes in the reorganization energy during charge transfer in a nucleotide strand with variations in the degree of orbital overlap in neighboring nucleotide pairs in different molecular sequences. The rate of hole transfer occurring in a DNA molecule through the superexchange and hopping transfer mechanisms is limited by the vibrational relaxation of the geometry of the nucleotide bases, as well as by the dynamics of solvent molecules. The rate of charge transfer in the DNA molecule depends on the height of the potential barrier between the donor fragment and the molecular bridge and on the positional arrangement of nucleobase pairs and their number in the molecular bridge. Inclusion of the interstrand charge transfer, which is characterized by a small degree of orbital overlap in the nucleobases of the opposite strands, does not affect the total charge transfer in the DNA molecule. An increase of the number of parallel components (processes) in the hopping mechanism entails an increase in the rate of charge transfer in the double helix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  2. M. Bixon, J. Jortner, and M. E. Michel-Beyerle, Chem. Phys. 197, 389 (1995).

    Article  Google Scholar 

  3. J. Olofsson and S. Larsson, J. Phys. Chem. B 105, 10398 (2001).

    Google Scholar 

  4. W. Q. Deng and W. A. Goddard, III, J. Phys. Chem. B 108, 8614 (2004).

    Article  Google Scholar 

  5. D. N. LeBard, M. Lilichenko, D. V. Matyushov, et al., J. Phys. Chem. B 107, 14509 (2003).

    Google Scholar 

  6. A. A. Voityuk, J. Jortner, M. Bixon, and N. Rusch, J. Chem. Phys. 114(13), 5614 (2001).

    Article  ADS  Google Scholar 

  7. H. L. Tavernier and M. D. Fayer, J. Phys. Chem. B 104, 11541 (2000).

    Google Scholar 

  8. C. F. Guerra, F. M. Bickelhaupt, J. G. Snijders, and E. J. Baerends, Chem.-Eur. J. 5(12), 3581 (1999).

    Article  Google Scholar 

  9. B. Giese, J. Amaudrut, A.-K. Kothrin, et al., Nature (London) 412, 318 (2001).

    Article  ADS  Google Scholar 

  10. A. V. Kabanov, V. M. Komarov, and V. Perez, Biofizika 50(3), 434 (2005) [Biophysics 50 (3), 392 (2005)].

    Google Scholar 

  11. Yu. P. Blagoi, Soros. Obraz. Zh., No. 10, 18 (1998).

  12. V. Ya. Maleev, M. A. Semenov, A. I. Gasan, and V. A. Kashpur, Biofizika, 38(5), 768 (1993) [Biophysics 38 (5), 789 (1993)].

    Google Scholar 

  13. T. Fiebig, C. Wan, S. O. Kelley, et al., Proc. Natl. Acad. Sci. USA 96, 1187 (1999).

    Article  ADS  Google Scholar 

  14. A. M. Brun and A. Harriman, J. Am. Chem. Soc. 114, 3656 (1992).

    Article  Google Scholar 

  15. F. D. Lewis, R. S. Kalgutkar, Y. Wu, et al., J. Am. Chem. Soc. 112, 12346 (2000).

    Google Scholar 

  16. F. D. Lewis, J. Liu, X. Zuo, et al., J. Am. Chem. Soc. 125, 4850 (2003).

    Article  Google Scholar 

  17. G. B. Schuster, Acc. Chem. Res. 33, 253 (2000).

    Article  Google Scholar 

  18. V. Sartor, E. Boone, and G. B. Schuster, J. Phys. Chem. B 105, 11057 (2001).

    Google Scholar 

  19. C. R. Treadway, M. G. Hill, and J. K. Barton, Chem. Phys. 281, 409 (2002).

    Article  Google Scholar 

  20. T. A. Koopmans, Physica (Amsterdam) 1, 104 (1933).

    Article  MATH  ADS  Google Scholar 

  21. M. A. Ratner, J. Phys. Chem. 94, 4877 (1990).

    Article  Google Scholar 

  22. M. Bixon and J. Jortner, J. Phys. Chem. B 104, 3906 (2000).

    Article  Google Scholar 

  23. T. Takada, K. Kawai, M. Fujitsuka, and T. Majima, Chem.-Eur. J. 11, 3835 (2005).

    Article  Google Scholar 

  24. H. Sagiyama and I. Saito, J. Am. Chem. Soc. 118, 7063 (1996).

    Article  Google Scholar 

  25. J. A. Berashevich, N. V. Novik, and V. E. Borisenko, Mikroelektronika 33(4), 209 (2004) [Russ. Microelectron. 33 (4), 254 (2004)].

    Google Scholar 

  26. N. V. Novik, J. A. Berashevich, and V. E. Borisenko, Dokl. Beloruss. Gos. Univ. Inf. Radioelektron., No. 1 (2), 20 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Grib.

Additional information

Original Russian Text © N.V. Grib, J.A. Berashevich, V.E. Borisenko, 2007, published in Biofizika, 2007, Vol. 52, No. 6, pp. 1008–1016.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grib, N.V., Berashevich, A. & Borisenko, V.E. The role of structural reorganization in charge carrier transfer in a DNA molecule. BIOPHYSICS 52, 537–544 (2007). https://doi.org/10.1134/S0006350907060048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907060048

Key words

Navigation