Skip to main content
Log in

The role of stacking interactions in clonidine binding

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Stacking interactions of the clonidine aromatic ring with that of Phe or Tyr in the α2-adrenoreceptor and Tyr in the tetrodotoxin-resistant sodium channel pore have been studied. Ab initio quantum-chemical calculations for a model system of two parallel aromatic rings have been performed with the GAMESS software using the 6-31G* basis set in the framework of the second-order Muller-Plesset perturbation theory with full geometry optimization without symmetry constraints. The parallel shifted conformation of two aromatic rings was found to be energetically most favorable. The 2′,6′-chlorination of one of the benzene rings enhances the stacking interaction, somewhat increases the shift of these rings, and possibly improves the hypotensive and analgesic functions of clonidine owing to an increase in the binding energy. The 4-fluorination of the clonidine ring can increase its analgesic effect but practically excludes its hypotensive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Guyenet, A. J. Physiol. 273, 1580 (1997).

    Google Scholar 

  2. L. B. MacMillan, L. Hein, M. S. Smith, et al., Science 273(5276), 801 (1996).

    Article  ADS  Google Scholar 

  3. T. Nyronen, M. Pihlavisto, et al., Mol. Pharmacol. 59(5), 1343 (2001).

    Google Scholar 

  4. J. A. Bikker, S. Trump-Kallmeyer, and C. Humblet, J. Med. Chem. 41, 2911 (1998).

    Article  Google Scholar 

  5. T. Salminen, M. Varis, T. Nyronen, et al., J. Biol. Chem. 274(33), 23405 (1999).

    Article  Google Scholar 

  6. J. M. Peltonen, T. Nyronen, et al., Brit. J. Pharmacol. 140, 347 (2003).

    Article  Google Scholar 

  7. P. Bischoff and E. Kochs, Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 28(1), 2 (1993).

    Article  Google Scholar 

  8. N. Ogata and Y. Ohishi, Jpn. J. Pharmacol. 88, 365 (2002).

    Article  Google Scholar 

  9. A. N. Akopian, V. Souslova, S. England, et al., Nature Neurosci. 2(6), 541 (1999).

    Article  Google Scholar 

  10. F. M. Ashcroft, Ion Channels and Desease: Channelopathies (San Diego, 2000).

  11. M. E. Brau, M. Dreimann, A. Olschewski, et al., Anesthesiology 94(1), 137 (2001).

    Article  Google Scholar 

  12. B. Hille, Ion Channels of Excitable Membranes, 3rd ed. (Sinauer Associates, 2001).

  13. F. Duflo, D. Conklin, X. Li, and J. C. Eisenach, Anesthesiology 93, 382 (2000).

    Article  Google Scholar 

  14. C. Pancaro, W. Ma, M. Vincler, et al., Anesthesiology 98(3), 748 (2003).

    Article  Google Scholar 

  15. A. I. Vislobokov and A. L. Savos’kin, Eksp. Klin. Farmakol. 2(6), 20 (1999).

    Google Scholar 

  16. I. E. Katina, G. A. Nasledov, R. S. Khrustaleva, and B. F. Shchegolev, Byull. Eksp. Biol. Med. 139(2), 166 (2005).

    Article  Google Scholar 

  17. I. E. Katina, B. V. Krylov, R. S. Khrustaleva, et al., Byull. Eksp. Biol. Med. 139(1), 44 (2005).

    Article  Google Scholar 

  18. Molecular Interactions, Ed. by H. Ratajczak and W. J. Orville-Thomas, (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  19. R. R. Ruffolo, et al., in The alpha-2 Adrenergic Receptors, Ed. by L. E. Limbird (Humana, Clifton, 1988).

    Google Scholar 

  20. V. Spirko, O. Engkvist, et al., J. Chem. Phys. 111(2), 572 (1999).

    Article  ADS  Google Scholar 

  21. P. Hobza, H. L. Selzle, and E. W. Schlag, J. Am. Chem. Soc. 116(8), 3500 (1994).

    Article  Google Scholar 

  22. S. Tsuzuki, T. Uchimaru, et al., J. Chem. Phys. 11(24), 11216 (2002).

    Article  ADS  Google Scholar 

  23. R. L. Jaffe and G. D. Smith, J. Chem. Phys. 105(7), 2780 (1996).

    Article  ADS  Google Scholar 

  24. A. D. McLean and G. S. Chadler, J. Chem. Phys. 72, 5639 (1980); R. Krishnan, J. S. Binkley, et al., J. Chem. Phys. 72, 650 (1980).

    Article  ADS  Google Scholar 

  25. T. Clark, J. Chandrasekhar, et al., J. Comp. Chem. 4, 294 (1983).

    Article  Google Scholar 

  26. C. Muller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  ADS  Google Scholar 

  27. J. A. Pople, R. Krishnan, et al., Int. J. Quant. Chem. XIV, 545 (1978).

    Article  Google Scholar 

  28. K. S. Law, M. Schauer, and E. R. Bernstein, J. Chem. Phys. 81, 4871 (1984).

    Article  ADS  Google Scholar 

  29. G. B. McGaughey, M. Gague, and A. K. Rappe, J. Biol. Chem. 273(25), 15458 (1998).

    Google Scholar 

  30. E. G. Bogdanov, D. A. Zaitsev, Yu. D. Ignatov, and A. G. Shavva, Eksp. Klin. Farmakol. 60(5), 23 (1997).

    Google Scholar 

  31. M. S. Gordon, Chem. Phys. Lett 76, 163 (1980).

    Article  ADS  Google Scholar 

  32. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14(11), 1347 (1993).

    Article  Google Scholar 

  33. R. L. Jaffe, G. D. Smith, M. E. Brau, et al., J. Chem. Phys. 105(7), 2780 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Shchegolev.

Additional information

Original Russian Text © B.F. Shchegolev, E.V. Shlyakhto, R.S. Khrustaleva, I.E. Katina, V.A. Tsyrlin, 2007, published in Biofizika, 2007, Vol. 52, No. 6, pp. 972–977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchegolev, B.F., Shlyakhto, E.V., Khrustaleva, R.S. et al. The role of stacking interactions in clonidine binding. BIOPHYSICS 52, 527–531 (2007). https://doi.org/10.1134/S0006350907060024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907060024

Key words

Navigation