Skip to main content
Log in

Structural and thermodynamic analysis of the conformational states of self-complementary hexanucleotides 5′-d(GCATGC) and 5′-d(GCTAGC) in Aqueous Solution

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The conformational states of hexanucleotides 5′-d(GCATGC) and 5′-d(GCTAGC) capable of forming hairpins in aqueous solution were studied by 1D and 2D 1H NMR and molecular dynamics. The equilibrium thermodynamic parameters were determined for the formation of duplexes and hairpins, and the spatial structures were computed for the GCATGC and GCTAGC conformers. The mobility of the hexamer constituents was evaluated by nanosecond molecular dynamics simulation. The possible causes of the observed difference in the thermodynamic stability of the duplex and the hairpin are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.-M. Miao, Y. Honda, K. Tanaka, et al., Nucl. Acids Res. 21(21), 4900 (1993).

    Article  Google Scholar 

  2. C. Spiro, J. P. Richards, S. Chandrasekaran, et al., Proc. Natl. Acad. Sci. USA 90, 4606 (1993).

    Article  ADS  Google Scholar 

  3. S. J. Froelich-Ammon, K. C. Gale, and N. Osheroff, J. Biol. Chem. 269, 7719 (1994).

    Google Scholar 

  4. D. Rentzeperis, K. Alessi, and L. A. Marky, Nucl. Acids Res. 21(11), 2683 (1993).

    Article  Google Scholar 

  5. I. Hirao, G. Kawai, S. Yoshizawa, et al., Nucl. Acids Res. 22(4), 576 (1994).

    Article  Google Scholar 

  6. D. B. Davies, V. I. Pahomov, and A. N. Veselkov, Nucl. Acids Res. 25(22), 4523 (1997).

    Article  Google Scholar 

  7. P. Padrta, R. Stefl, L. Kralik, et al., J. Biomol. NMR. 24(1), 1 (2002).

    Article  Google Scholar 

  8. I. Hirao, Y. Nishimura, Y. Tagawa, et al., Nucl. Acids Res. 20(15), 3891 (1992).

    Article  Google Scholar 

  9. L. E. Xodo, G. Manzini, F. Quadrifoglio, et al., Nucl. Acids Res. 19(7), 1505 (1991).

    Article  Google Scholar 

  10. K. Arai, R. Low, J. Kobori, et al., J. Biol. Chem. 256, 5273 (1981).

    Google Scholar 

  11. P. Elias and I. R. Lehman, Proc. Natl. Acad. Sci. USA 85(9), 2959 (1988).

    Article  ADS  Google Scholar 

  12. D. W. Cowing, J. C. A. Bardwell, E. A. Craig, et al., Proc. Natl. Acad. Sci. USA 82(9), 2679 (1985).

    Article  ADS  Google Scholar 

  13. A. N. Veselkov, V. I. Pakhomov, O. V. Rogova, et al., Biofizika 49, 781 (2004).

    Google Scholar 

  14. A. N. Veselkov, V. I. Pakhomov, R. J. Eaton, and D. B. Davies, Biofizika 45, 20 (2000).

    Google Scholar 

  15. A. N. Veselkov, V. I. Pakhomov, R. J. Eaton, and D. B. Davies, Dokl. NAN Ukrainy No. 3, 95 (2001).

  16. A. T. Brunger, X-PLOR. A System for X-Ray Crystallography and NMR (Univ. Press, Yale, 1992).

    Google Scholar 

  17. A. D. MacKerell and N. Banavali, J. Cîmp. Chem. 21, 105 (2000).

    Article  Google Scholar 

  18. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, et al., J. Comp. Chem., No. 4, 187 (1983).

  19. S. Y. Reddy, F. Leclerc, and M. Karplus, Biophys. J. 84, 1421 (2003).

    Article  ADS  Google Scholar 

  20. W. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79(2), 926 (1983).

    Article  ADS  Google Scholar 

  21. L. Verlet, Phys. Rev. 159(1), 98 (1967).

    Article  ADS  Google Scholar 

  22. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23, 327 (1977).

    Article  ADS  Google Scholar 

  23. T. V. Chalikian, A. P. Sarvazyan, and K. J. Breslauer, Biophys. Chem. 51(2–3), 89 (1994).

    Article  Google Scholar 

  24. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics. 14, 33 (1996).

    Article  Google Scholar 

  25. S. S. Wijmendga, M. W. Mooten, and S. W. Hilbers, NMR of Nucleic Acids: from Spectrum to Structure/NMR of Macromolecules. A practical approach (IRL Press., Oxford, 1993).

    Google Scholar 

  26. D. B. Davies and A. N. Veselkov, J. Chem. Soc. Faraday Trans. 92, 3545 (1996).

    Article  Google Scholar 

  27. D. Z. Avizonis and D. R. Kearns, Nucl. Acids Res. 23(7), 1260 (1995).

    Article  Google Scholar 

  28. M. J. Blommers, J. A. Walters, C. A. Haasnoot, et al., Biochemistry 28(18), 7491 (1989).

    Article  Google Scholar 

  29. L. P. Orbons, G. A. van der Marel, J. H. van Boom, and C. Altona, Eur. J. Biochem. 170(1–2), 225 (1987).

    Article  Google Scholar 

  30. L. P. M. Orbons, G. A. van der Marel, J. H. van Boom, and C. Altona, Nucl. Acids Res. 14(10), 4187 (1986).

    Article  Google Scholar 

  31. L. P. Orbons, G. A. van der Marel, J. H. van Boom, and C. Altona, J. Biomol. Struct. Dyn. 4(6), 939 (1987).

    Google Scholar 

  32. H. H. Ippel, H. van den Elst, G. A. van der Marel, et al., Biopolymers 46(6), 375 (1998).

    Article  Google Scholar 

  33. L. P. Orbons, A. A. van Beuzekom, and C. Altona, J. Biomol. Struct Dyn. 4(6), 965 (1987).

    Google Scholar 

  34. A. Davison and D. R. Leach, Nucl. Acids Res. 22(21), 4361 (1994).

    Article  Google Scholar 

  35. G. Raghunathan, R. L. Jernigan, H. T. Miles, and V. Sasisekharan, Biochemistry 30(3), 782 (1991).

    Article  Google Scholar 

  36. H. T. Allawi and J. SantaLucia, Jr., Biochemistry 36, 10581 (1997).

    Google Scholar 

  37. J. SantaLucia Jr., Proc. Natl. Acad. Sci. USA 95, 1460 (1998).

    Article  ADS  Google Scholar 

  38. A. P. Williams, C. E. Longfellow, S. M. Freier, et al., Biochemistry 28, 4283 (1989).

    Article  Google Scholar 

  39. J. SantaLucia Jr., H. T. Allawi, and P. A. Seneviratne, Biochemistry 35, 3555 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Kostyukov, O.V. Rogova, V.I. Pakhomov, M.P. Evstigneev, 2007, published in Biofizika, 2007, Vol. 52, No. 4, pp. 625–635.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyukov, V.V., Rogova, O.V., Pakhomov, V.I. et al. Structural and thermodynamic analysis of the conformational states of self-complementary hexanucleotides 5′-d(GCATGC) and 5′-d(GCTAGC) in Aqueous Solution. BIOPHYSICS 52, 375–382 (2007). https://doi.org/10.1134/S0006350907040033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907040033

Key words

Navigation