Skip to main content
Log in

Nonstationarity and duration of the cardiac interval time series in assessing the functional state of operator personnel

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The influence of nonstationarity in the time series of cardiac intervals on the assessment of the functional state (FS) of operator personnel was analyzed with a three-factor model of heart rhythm variability (HRV). ECG recordings were made in supine position at rest and in the sedentary position before and after important operator testing. In all three cases, the FS assessments were not influenced by nonstationarity of the input data. The effect of nonstationarity was also negligible for some particular HRV indices. Reliable assessments could be obtained from relatively short samples (256 down to 32 RR intervals) with prior norming of the factor indices for the corresponding segment length. The influence of the time series duration on the HRV indices was examined in various FSs; stable indices and proper recording conditions were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reference in Applied Statistics, Ed. by E. Lloyd, W. Lederman, S. A. Aivazyan, and Yu. N. Tyurin (Finansy i Statistika, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  2. W. S. Wei, Time series analysis: univariate and multivariate methods (AddisonWesley, Redwood, CA, 1990).

    MATH  Google Scholar 

  3. “Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology,” Circulation 93(5), 1043 (1996).

  4. R. M. Baevsky, G. G. Ivanov, L. V. Chireikin, et al., Vestn. Aritmol. No. 24, 65 (2001).

  5. S. W. Porges and R. E. Bohrer, in Principles of psychophysiology: physical, social, and inferential elements, Ed. by J. T. Cacioppo and L. G. Tassinary (Cambridge, New York, 1991), pp. 708–753.

  6. E. J. M. Weber, P. C. M. Molenaar, and M. W. Van der Molen, Psychophysiology 29(1), 55 (1992).

    Article  Google Scholar 

  7. P. Grossman, Psychophysiology 29(1), 66 (1992).

    Article  Google Scholar 

  8. G. G. Berntson, J. T. Bigger, D. L. Eckberg, et al., Psychophysiology 34(6), 623 (1997).

    Article  Google Scholar 

  9. B. H. Friedman, M. T. Allen, I. C. Christie, and A. K. Santucci, IEEE Eng Med Biol Mag. 21(4), 35 (2002).

    Article  Google Scholar 

  10. P. Grossman, Biol. Psychol. 34(2–3), 131 (1992).

    Article  Google Scholar 

  11. P. K. Anokhin, Essays on the Physiology of Functional Systems (Meditsina, Moscow, 1974) [in Russian].

    Google Scholar 

  12. E. P. Il’in, Theory of Functional Systems in Physiology and Psychology, Ed. by B. F. Lomov (Nauka, Moscow, 1978), pp. 325–347 [in Russian].

    Google Scholar 

  13. V. A. Mashin and M. N. Mashina, Ross. Fiziol. Zh. im. Sechenova 90, 1508 (2004).

    Google Scholar 

  14. V. V. Vlasov, Efficacy of Diagnostic Studies (Meditsina, Moscow, 1988) [in Russian].

    Google Scholar 

  15. J. Glass and J. Stanley, Statistical Methods in Pedagogy and Psychology (Progress, Moscow, 1976) [in Russian].

    Google Scholar 

  16. M. J. Dekker, E. G. Schouten, P. Klootwijk, et al., American J. Epidemiology 145(10), 899 (1997).

    Google Scholar 

  17. J. McNames, T. Thong, and B. Goldstein, in Proceedings of the 2003 IEEE EMBS Conference (Cancun, Mexico, 2003), pp. 212–215.

    Google Scholar 

  18. G. B. Moody, R. G. Mark, and A. L. Goldberger, IEEE Engineering in Medicine and Biology Magazine 20(3), 70 (2001).

    Article  Google Scholar 

  19. Reference in Applied Statistics, Ed. by E. Lloyd, W. Lederman, and Yu. N. Tyurin (Finansy i Statistika, Moscow, 1989), Vol. 1 [in Russian].

    Google Scholar 

  20. J. Hayano, Y. Sakakibara, A. Yamada, et al., Amer. J. Cardiol. 67(2), 199 (1991).

    Article  Google Scholar 

  21. R. E. Kleiger, P. K. Stein, M. S. Bosner, and J. N. Rottman, in Heart Rate Variability, Ed. by M. Malik and A. J. Camm (Futura, Armonk, NY, 1995), pp. 33–45.

    Google Scholar 

  22. V. A. Mashin, Fiziol. Chel. 28(4), 63 (2002); Biofizika 51, 524 (2006).

    Google Scholar 

  23. V. A. Mashin, Ross. Fiziol. Zh. im. Sechenova 88, 851 (2002).

    Google Scholar 

  24. B. A. Zyryanov, S. N. Vlasov, and E. V. Kostromin, Methods and Algorithms of Treating Random and Determined Periodic Processes (Ural Univ., Sverdlovsk, 1990) [in Russian].

    Google Scholar 

  25. E. V. Gubler and A. A. Genkin, Use of Nonparametric Statistical Criteria in Medicobiological Studies (Meditsina, Leningrad, 1973) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Mashin, 2007, published in Biofizika, 2007, Vol. 52, No. 2, pp. 344–354.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashin, V.A. Nonstationarity and duration of the cardiac interval time series in assessing the functional state of operator personnel. BIOPHYSICS 52, 241–247 (2007). https://doi.org/10.1134/S0006350907020170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907020170

Key words

Navigation