Skip to main content
Log in

Oxygen effect in heat-induced DNA damage

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The major kinds of heat-induced damage to DNA (depurination, guanine oxidation to 8-oxoguanine, cytosine deamination to uracil) were shown to depend in their extent on the oxygen content in solution. Formation of hydrogen peroxide in water upon heating was enhanced in the presence of D2O and decreased by various scavengers of singlet oxygen, corroborating the involvement of 1O2 in the thermal generation of reactive oxygen species. The aggregate data indicate that all kinds of heat-induced DNA damage in solution arise through this common mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OG:

7,8-dihydro-8-oxoguanine

ROS:

reactive oxygen species

References

  1. T. Lindahl, Nature 362, 709 (1993).

    Article  ADS  Google Scholar 

  2. B. K. Duncan and J. H. Miller, Nature 287, 560 (1980).

    Article  ADS  Google Scholar 

  3. K. C. Cheng, D. S. Cahill, H. Kasai, et al., J. Biol. Chem. 267, 166 (1992).

    Google Scholar 

  4. V. Duarte, J. Muller, and C. Burrows, Nucl. Acids Res. 27, 496 (1999).

    Article  Google Scholar 

  5. S. Greer and S. J. Zamenhof, J. Mol. Biol. 4, 123 (1962).

    Article  Google Scholar 

  6. T. Lindahl and B. Nyberg, Biochemistry 11, 3610 (1972).

    Article  Google Scholar 

  7. J. Eigner, H. Boedtker, and G. Michaels, Biochim. Biophys. Acta 51, 165 (1961).

    Article  Google Scholar 

  8. T. Lindahl and B. Nyberg, Biochemistry 13, 3405 (1974).

    Article  Google Scholar 

  9. L. A. Frederico, T. A. Kunkel, and B. R. Shaw, Biochemistry 29, 2532 (1990).

    Article  Google Scholar 

  10. V. I. Bruskov and A. I. Petrov, Mol. Biol. 26, 1362 (1992).

    Google Scholar 

  11. V. I. Bruskov, L. V. Malakhova, Zh. K. Masalimov, and A. V. Chernikov, Nucleic Acids Res. 30, 1354 (2002).

    Article  Google Scholar 

  12. N. K. Kochetkov, E. I. Budovskii, E. D. Sverdlov, et al., Organic Chemistry of Nucleic Acids (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  13. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, Dokl. Ross. Akad. Nauk 381, 262 (2001).

    Google Scholar 

  14. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, Dokl. Ross. Akad. Nauk 384, 821 (2002).

    Google Scholar 

  15. A. V. Chemikov and V. I. Bruskov, Biofizika 47, 773 (2002).

    Google Scholar 

  16. A. V. Mazin, K. D. Kuznedelov, A. S. Kraev, et al., Methods in Molecular Genetics and Gene Engineering (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  17. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, Data for Biochemical Research, 3rd edn. (Clarendon Press, Oxford, UK, 1986) pp. 103–114.

    Google Scholar 

  18. Handbook of Biochemistry Ed. by H. A. Sober (The Chemical Rubber Co., Cleveland, Ohio, 1970), pp. H–96, H-97.

    Google Scholar 

  19. V. I. Bruskov, A. I. Gaziev, L. V. Malakhova, Yu. A. Mantsygin, and O. S. Morenkov, Biokhimiya 61, 737 (1996).

    Google Scholar 

  20. T. P. A. Devasagayam, S. Steenken, M. S. W. Obendorf, et al., Biochemistry 30, 6283 (1991).

    Article  Google Scholar 

  21. S. W. Ryter and R. M. Tyrrel, Free Radic. Biol. Med. 24, 1520 (1998).

    Article  Google Scholar 

  22. N. V. Shinkarenko and V. B. Aleskovskii, Usp. Khimii 51, 713 (1982).

    Google Scholar 

  23. A. A. Krasnovsky, Jr., Biofizika 49, 305 (2004).

    Google Scholar 

  24. A. P. Mohnaty and J. Matysik, Amino Acids 21, 195 (2001).

    Article  Google Scholar 

  25. V. S. Smimova, S. V. Gudkov, A. V. Chemikov, and V. I. Bruskov, Biofizika 50, 243 (2005).

    Google Scholar 

  26. M. Dong, C. Wang, W. M. Deen, and P. C. Dedon, Chem. Res. Toxicol. 16, 1044 (2003).

    Article  Google Scholar 

  27. A. V. Chernikov and V. I. Bruskov, Dokl. Ross. Akad. Nauk 400, 279 (2005).

    Google Scholar 

  28. B. Halliwell and O. Aruoma, FEBS Lett. 281, 9 (1991).

    Article  Google Scholar 

  29. A. I. Gaziev, Radiats. Biol. Radioekol. 39, 630 (1999).

    Google Scholar 

  30. J. F. Ward, Progr. Nucl. Acid Res. Mol. Biol. 35, 95 (1988).

    Article  Google Scholar 

  31. Yu. B. Kudryashov, Radiation Biophysics: Ionizing Radiation (Fizmatgiz, Moscow, 2004) [in Russian].

    Google Scholar 

  32. C. von Sonntag, The Chemical Basis of Radiation Biology (Taylor and Francis, London, 1987).

    Google Scholar 

  33. G. Hems, Nature 186, 710 (1960).

    Article  ADS  Google Scholar 

  34. A. F. Fuciarelli, B. J. Wegher, W. F. Blakely, and M. Dizdaroglu, Int. J. Radiat. Biol. 58, 397 (1990).

    Google Scholar 

  35. J.-L. Ravanat, T. Douki, and J. Cadet, J. Photochem. Photobiol. 63, 88 (2001).

    Article  Google Scholar 

  36. J. Cadet, E. Sage, and T. Douki, Mutat. Res. 571, 3 (2005).

    Google Scholar 

  37. J. Nakamura, D. K. La, and J. A. Swenberg, J. Biol. Chem. 275, 5323 (2000).

    Article  Google Scholar 

  38. H.-J. Rhaese and E. Freese, Biochim. Biophys. Acta 155, 476 (1968).

    Google Scholar 

  39. A. F. Fuciarelli, E. C. Sisk, R. M. Thomas, and D. L. Miller, Free Rad. Biol. Med. 18, 231 (1995).

    Article  Google Scholar 

  40. I. I. Stepuro, R. I. Adamchuk, and V. I. Stepuro, Biofizika 49, 773 (2004).

    Google Scholar 

  41. R. S. Stepanyan, G. S. Airapetyan, G. F. Markaryan, S. N. Airapetyan, and G. A. Arakelyan, Radiats. Biol. Radioekol. 40, 435 (2000).

    Google Scholar 

  42. G. A. Domrachev, Yu. L. Rodygin, D. A. Selivanovskii, and P. A. Stunzhas, Chemistry of Seas and Oceans (Nauka, Moscow, 1995), pp. 169–177 [in Russian].

    Google Scholar 

  43. O. Yu. Gudkova, S. V. Gudkov, A. B. Gapeev, et al., Biofizika 50, 773 (2005).

    Google Scholar 

  44. V. I. Bruskov, A. V. Chernikov, S. V. Gudkov, and Zh. K. Masalimov, Biofizika 48, 1022 (2003).

    Google Scholar 

  45. J. F. Davidson, B. Whyte, P. H. Bissinger, and R. H. Schiestl, J. Biol. Chem. 268, 16815 (1996).

    Google Scholar 

  46. T. Yoshikawa, S. Kokura, K. Tainaka, et al., Cancer Res. 53, 2326 (1993).

    Google Scholar 

  47. S. W. Flanagan, P. L. Moseley, and G. R. Buettner, FEBS Lett. 431, 285 (1998).

    Article  Google Scholar 

  48. V. A. Tronov, E. M. Konstantinov, and I. I. Kramarenko, Tsitologiya 44, 1079 (2002).

    Google Scholar 

  49. J. Frank, D. K. Kelleher, A. Pompella, et al., Cancer Res. 58, 2693 (1998).

    Google Scholar 

  50. L. E. Huang, H. Zhang, S. W. Bae, and A. Y. Liu, J. Biol. Chem. 269, 30718 (1994).

    Google Scholar 

  51. D. M. Katschinski, K. Boos, S. G. Schindler, and J. Fandrey, J. Biol. Chem. 275, 21094 (2000).

    Google Scholar 

  52. O. Will, H.-C. Mahler, A.-P. Arrigo, and B. Epe, Carcinogenesis 20, 333 (1999).

    Article  Google Scholar 

  53. H. A. Johnson and M. Pavelec, Am. J. Pathol. 66, 557 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Chemikov, S.V. Gudkov, I.N. Shtarkman, V.I. Bruskov, 2007, published in Biofizika, 2007, Vol. 52, No. 2, pp. 244–251.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernikov, A.V., Gudkov, S.V., Shtarkman, I.N. et al. Oxygen effect in heat-induced DNA damage. BIOPHYSICS 52, 185–190 (2007). https://doi.org/10.1134/S0006350907020078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907020078

Key words

Navigation