Skip to main content

Kinetic model of functioning and regulation of Escherichia coli isocitrate dehydrogenase


To describe published experimental data on the functioning of E. coli isocitrate dehydrogenase (IDH), a Rapid Equilibrium Random Bi Ter mechanism involving the formation of two dead-end enzyme complexes is proposed and a kinetic model of enzyme functioning is constructed. The enzyme is shown to be regulated through reversible phosphorylation by IDH kinase/phosphatase; the latter, in its turn, is controlled by IDH substrates and also by a number of central metabolites—pyruvate, 3-phosphoglycerate, and AMP—reflecting the energy demand of the cell. Using the model, it is shown that an increase in the concentration of the above effectors raises the fraction of active IDH and thus enhances the Krebs cycle flux. The ratio between the free and the phosphorylated forms of IDH is more sensitive to AMP, NADP, and isocitrate than to pyruvate and 3-phosphoglycerate. The model also predicts changes in the ratio between phosphorylated and active forms of IDH in the Krebs cycle that occur with a change in the energy and biosynthetic loads on E. coli cells.

This is a preview of subscription content, access via your institution.



isocitrate dehydrogenase








  1. F. C. Neidhardt, Cell. Mol. Biol. 1, 3 (1987).

    Google Scholar 

  2. H. L. Kornberg and H. A. Krebs, Nature 179, 988 (1957).

    Article  ADS  Google Scholar 

  3. H. G. Nimmo, Biochem. J. 234, 317 (1986).

    Google Scholar 

  4. A. M. Dean and D. E. Koshland, Biochemistry 32, 9302 (1993).

    Article  Google Scholar 

  5. W. W. Cleland, Biochim. Biophys. Acta 67, 104 (1963).

    Article  Google Scholar 

  6. B. L. Stoddard, A. Dean, and D. E. Koshland, Biochemistry 32, 9310 (1993).

    Article  Google Scholar 

  7. S. P. Miller, R. Chen, E. J. Karschnia, et al., J. Biol. Chem. 275(2), 833 (2000).

    Article  Google Scholar 

  8. A. Cornish-Bowden, Principles of Enzyme Kinetics (Butterworths, London, 1976; Mir, Moscow, 1979).

    Google Scholar 

  9. O. V. Demin, I. I. Goryanin, S. Dronov, and G. V. Lebedeva, Biokhimiya 69, 1625 (2004).

    Google Scholar 

  10. I. Goryanin, T. C. Hodgman, and E. Selkov, Bioinformatics 15, 749 (1999).

    Article  Google Scholar 

  11. M. L. Uhr, V. W. Thompson, and W. W. Cleland, J. Biol. Chem. 249, 2920 (1974).

    Google Scholar 

  12. C. S. Stueland, K. R. Eck, Stieglbauer, and D. C. LaPorte, J. Biol. Chem. 262, 16095 (1987).

    Google Scholar 

  13. C. S. Stueland, K. Gorden, and D. C. LaPorte, J. Biol. Chem. 263, 19475 (1988).

    Google Scholar 

  14. K. Walsh, and D. E. Koshland, Jr., J. Biol. Chem. 259, 9646 (1984).

    Google Scholar 

  15. O. H. Lowry, J. Carter, J. B. Ward, and L. Glaser, J. Biol. Chem. 246, 6511 (1971).

    Google Scholar 

  16. K. B. Andersen, and K. von Meyenburg, J. Biol. Chem. 252, 4151 (1977).

    Google Scholar 

  17. D. C. LaPorte and D. E. Koshland, Jr., Nature 305, 286 (1983).

    Article  ADS  Google Scholar 


Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text © E.A. Mogilevskaya, G.V. Lebedeva, I.I. Goryanin, O.V. Demin, 2007, published in Biofizika, 2007, Vol. 52, No. 1, pp. 47–56.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mogilevskaya, E.A., Lebedeva, G.V., Goryanin, I.I. et al. Kinetic model of functioning and regulation of Escherichia coli isocitrate dehydrogenase. BIOPHYSICS 52, 30–39 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Key words

  • Krebs cycle
  • isocitrate dehydrogenase
  • kinetic model