Skip to main content
Log in

Evaluation of direct effects of protein ubiquitylation using computational analysis

  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Ubiquitylation is an important regulatory mechanism in the eukaryotic cell. A large volume of experimental data on protein ubiquitylation has been acquired in recent years. Particular ubiquitylated lysine residues were also identified. This allows us to analyze co-localization of ubiquitylation sites and functionally important protein domains, following the idea that ubiquitylation can directly affect protein functional activity. Computational analysis suggests that ubiquitylation can affect the functional activity of some proteins through direct steric effects. (1) Ubiquitylation can block protein functional domains/active site or cause accessibility limitations. It also (2) causes steric disturbances for homo-oligomerization and (3) influences heterologous protein interactions, impeding the binding of target protein with its partners. (4) Interaction with partner proteins can be disturbed by restricted conformational flexibility. Any of these effects will result in a decrease of target protein activity. Thus, we suggest a new “loss-of-function” mechanism of protein regulation by ubiquitylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Jennissen, Eur. J. Biochem. 231, 1 (1995).

    Article  Google Scholar 

  2. M. H. Glickman and A. Ciechanover, Physiol. Rev. 82, 373 (2002).

    Google Scholar 

  3. K. Haglund and I. Dikic, EMBO J. 24, 3353 (2005).

    Article  Google Scholar 

  4. C. Denison, D. S. Kirkpatrick, and S. P. Gygi, Curr. Opin. Chem. Biol. 9, 69 (2005).

    Article  Google Scholar 

  5. A. Pichler, P. Knipscheer, E. Oberhofer, et al., Nat. Struct. Mol. Biol. 12, 264 (2005).

    Article  Google Scholar 

  6. A. L. Chernorudskiy, A. Garcia, E. V. Eremin, et al., BMC Bioinformatics 8, 126 (2007).

    Article  Google Scholar 

  7. E. Gasteiger, A. Gattiker, C. Hoogland, et al., Nucleic Acids Res. 31, 3784 (2003).

    Article  Google Scholar 

  8. H. M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28, 235 (2000).

    Article  Google Scholar 

  9. A. Gattiker, E. Gasteiger, and A. Bairoch, Appl. Bioinformatics 1, 107 (2002).

    Google Scholar 

  10. J. D. Thompson, D. G. Higgins, and T.J. Gibson, Nucleic Acids Res. 22, 4673 (1994).

    Article  Google Scholar 

  11. T. A. Hall, Nucl. Acids. Symp. Ser. 41, 95 (1999).

    Google Scholar 

  12. T. Schwede, J. Kopp, N. Guex, et al., Nucleic Acids Res. 31, 3381 (2003).

    Article  Google Scholar 

  13. J. Kopp and T. Schwede, Nucleic Acids Res. 32, D230 (2004).

    Article  Google Scholar 

  14. I. N. Shindyalov and P. E. Bourne, Protein Eng. 11, 739 (1998).

    Article  Google Scholar 

  15. S. Jones and J. M. Thornton, Proc. Natl. Acad. Sci. USA 93, 13 (1996).

    Article  ADS  Google Scholar 

  16. N. Guex and M. C. Peitsch, Electrophoresis 18, 2714 (1997).

    Article  Google Scholar 

  17. J. Peng, D. Schwartz, J. E. Elias, et al., Nat. Biotechnol. 21, 921 (2003).

    Article  Google Scholar 

  18. J. A. Smiley and M. E. Jones, Biochemistry 31, 12 162 (1992).

    Article  Google Scholar 

  19. H. Shin, K. Okada, J.C. Wilkinson, et al., Biochem. J. 373, 965 (2003).

    Article  Google Scholar 

  20. M. Laub, J.A. Steppuhn, M. Bluggel, et al., Eur. J. Biochem. 255, 422 (1998).

    Article  Google Scholar 

  21. A. T. Bender, D.R. Demady, and Y. Osawa, J. Biol. Chem. 275, 17E407 (2000).

    Google Scholar 

  22. A. Y. Dunbar, Y. Kamada, G.J. Jenkins, et al., Mol. Pharmacol. 66, 964 (2004).

    Article  Google Scholar 

  23. A. Banerjee, T.A. Kocarek, and R. F. Novak, Drug Metab. Dispos. 28, 118 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Chernorudskiy.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernorudskiy, A.L., Shorina, A.S., Garcia, A. et al. Evaluation of direct effects of protein ubiquitylation using computational analysis. BIOPHYSICS 51 (Suppl 1), 39–43 (2006). https://doi.org/10.1134/S0006350906070086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906070086

Key words

Navigation