Skip to main content
Log in

Nitrite protonation as a necessary stage in the generation of nitric oxide from nitrite in biological systems

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The yields of nitric oxide from 1 mM and 10 mM sodium dithionite in 5 or 150 mM solutions of HEPES buffer (pH 7.4) differed by a factor of 200. Dithionite acted as both a strong reducing agent and an agent responsible for local acidification of the solutions without significant changes in pH. The concentration of nitric oxide was estimated by electron paramagnetic resonance (EPR) by monitoring its incorporation into water-soluble complexes of Fe with N-methyl-D-glucamine dithiocarbamate (MGD), which resulted in the formation of EPR-detectable mononitrosyl complexes of iron. Ten seconds after dithionite addition, the concentration of mononitrosyl iron complexes reached 2 μM, whereas it did not become greater than 0.01 μM in 5 mM HEPES buffer. It has been suggested that this difference results from a longer lifetime of a localized decrease in pH in a weaker buffer solution. This time could be long enough for the protonation of some nitrite molecules. Nitrous acid thus formed decomposed to nitric oxide. A difference in nitric oxide formation from nitrite in weak and strong buffer solutions was also observed in the presence of hemoglobin (0.3 mM) or serum albumin (0.5 mM). However, in the weak buffer the nitric oxide yield was only three-four times greater than in the strong buffer. An increase in the nitric oxide yield from nitrite was observed in solutions containing both proteins. A significant amount of nitric oxide from nitrite was formed in mouse liver preparation subjected to freezing and thawing procedure followed by slurrying in 150 mM HEPES buffer (pH 7.4) and dithionite addition (10 mM). We suggest that the presence of zones with lowered pH values in cells and tissues may be responsible for the predominance of the acidic mechanism of nitric oxide formation from nitrite. The contribution of nitric oxide formation from nitrite catalyzed by heme-containing proteins as nitrite reductases may be minor under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Haldane, R. G. Makgill, and A. E. Mavrogordato, J. Physiol. 21, 160 (1897).

    Google Scholar 

  2. J. Brooks, Proc. R. Soc. Lond., Ser. B 32, 368 (1937).

    Article  ADS  Google Scholar 

  3. W. Marshall and C. R. Marshall, J. Biol. Chem. 158, 187 (1945).

    Google Scholar 

  4. F. Jung and H. Remmer, Arch. Exp. Pathol. Pharm. 206, 456 (1949).

    Google Scholar 

  5. K. Sancier, G. Freeman, and J. Mills, Science 137, 752 (1962).

    Article  ADS  Google Scholar 

  6. H. Rein, O. Ristau, and G. Yung, Folia Haematol. 82, 191 (1964).

    Google Scholar 

  7. Ya. I. Aghina, L. N. Kayushin, and E. I. Nikishin, Biofizika 11, 710 (1966).

    Google Scholar 

  8. A. F. Vanin and A.G. Chetverikov, Biofizika 13, 608 (1968).

    Google Scholar 

  9. R. Kruszyna, M. Kruszyna, R. P. Smith, et al., J. Pharmacol. Exp. Ther. 241, 307 (1987).

    Google Scholar 

  10. Y. Henry, M. Lepoivre, J. C. Drapier, et al., FASEB J. 7, 1124 (1993).

    Google Scholar 

  11. K. Tsuchiya, Y. Kanematsu, M. Yoshizumi, et al., Am. J. Physiol. 288, H2163 (2005).

    Google Scholar 

  12. R. Ferrari, A. Gargoni, P. Bernocchi, et al., Circulation 94, 2587 (1996).

    Google Scholar 

  13. S. A. Gabel, H. R. Cross, R. E. London, et al., J. Physiol. 273, H2257 (1997).

    Google Scholar 

  14. M. P. Doyle, R.A. Pickering, T. M. DeWeert, et al., J. Biol. Chem. 256, 12393 (1982).

    Google Scholar 

  15. V. P. Reutov, E.G. Sorokina and L.P. Kayushin, Vopr. Med. Khim. 40, 31 (1994).

    Google Scholar 

  16. V. P. Reutov and E.G. Sorokina, Biokhimiya 63, 874 (1998).

    Google Scholar 

  17. K. Huang, A. Keszler, N. Patel, et al., J. Biol. Chem. 280, 31126 (2005).

    Article  Google Scholar 

  18. K. Cosby, K. S. Partovi, J. H. Crawford, et al., Nature Med. 9, 1498 (2003).

    Article  Google Scholar 

  19. E. Nagababu, S. Ramasamy, D. R. Abernethy, and J. M. Rifkind, J. Biol. Chem. 278, 46349 (2003).

    Article  Google Scholar 

  20. M. T. Gladwin, Am. J. Respir. Cell Mol. Biol. 32, 363 (2005).

    Article  Google Scholar 

  21. T. Ohnishi, Methods Mol. Biol. 100, 129 (1998).

    Google Scholar 

  22. S. Shinobu, S. Jones and M. Jones, Acta Pharm. Toxicol. 54 189 (1984).

    Google Scholar 

  23. A. F. Vanin, I. V. Malenkova, and V. A. Serezhenkov, Nitric Oxide: Biol. Chem. 3, 191 (1997).

    Article  Google Scholar 

  24. A. F. Vanin, X. Liu, A. Samouilov, et al., Biochim. Biophys. Acta 1474, 365 (2000).

    Google Scholar 

  25. A. F. Vanin and A, L. Klesvchyov, in Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, Ed. by S. Lukiewicz and J.L. Zweier (Kluwer, 1998), pp. 49–82.

  26. J. M. Robinson and J. R. Lancaster, Am. J. Respir. Cell Mol. Biol. 32, 257 (2005).

    Article  Google Scholar 

  27. N. Nasri, Y. Wang, B. H. Huynh, et al., J. Am. Chem. Soc. 113, 717 (1991).

    Article  Google Scholar 

  28. I. Wasser, S. de Vries, P. Loccoz, et al., Chem. Rev. 102, 1201 (2002).

    Article  Google Scholar 

  29. A. Slama-Schwok, A. Vanin, P. Martasek, et al., Nitric Oxide: Biol. Chem. 14, 157 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.D. Mikoyan, L.N. Kubrina, G.N. Khachatryan, A.F. Vanin, 2006, published in Biofizika, 2006, Vol. 51, No. 6, pp. 968–975.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikoyan, V.D., Kubrina, L.N., Khachatryan, G.N. et al. Nitrite protonation as a necessary stage in the generation of nitric oxide from nitrite in biological systems. BIOPHYSICS 51, 853–859 (2006). https://doi.org/10.1134/S0006350906060029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906060029

Key words

Navigation