Skip to main content
Log in

The biophysical aspects of reconstructing a single cell by the methods of cell engineering

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The problem of the low efficiency of mammalian cloning is discussed with emphasis on the need of expert assessment of every step in single cell reconstruction, beginning with microsurgical manipulations. Experimental proof is provided for the impairment of cell integrity upon its fixation for microsurgery by the negative pressure in a conventional holding pipette. The ensuing leakage of the cell contents is shown to depend on the value of negative pressure, the duration of holding, and the size of the holder orifice. An alternative method of cell fixation is proposed, taking advantage of the capillary forces in the holding micropipette. This reduces the holding effort by two orders of magnitude and raises the cell survival upon microsurgery at least to 92%. To alleviate cell damage by instrumental invasion, a new technique is proposed for making micropipettes. Another novel method is offered for pipette filling with viscous liquid such as DNA solution, which allows continuous injection of more than 1000 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Prather, Proc. Soc. Exp. Biol. Med. 195, 7 (1990).

    Google Scholar 

  2. K. Illmensee, Differentiation. 69, 167 (2002).

    Article  Google Scholar 

  3. K. L. Tamashiro, T. Wakayama, H. Aktsu, et al., Nat. Med. 8, 262 (2002).

    Article  Google Scholar 

  4. N. Ogonuki, K. Inoue, Y. Yamamoto, et al., Nat. Genet. 30, 253 (2002).

    Article  Google Scholar 

  5. Y. Tsunoda and Y. Kato, Differentiation 69, 158 (2002).

    Article  Google Scholar 

  6. T. Wakayama, A. C. Perry, M. Zuccotti, et al., Nature 394, 369 (1998).

    Article  ADS  Google Scholar 

  7. L. Picard and K. Betteridge, in Animal Biotechnology, Comprehensive Biotechnology (First Suppl), Ed. by M. Moo-Yong, L. Babiuk, and J. Phillips (Pergamon Press, Oxford, 1989), pp. 141–178.

    Google Scholar 

  8. T. Williams and G. Seidel, in Proceedings of Owners and Managers Worshop, IETS IX Annual Conference, 1983, pp. 33–52.

  9. T. J. Williams, R. P. Elsden, and G. E. Seidel, Theriogenology 22, 521 (1984).

    Article  Google Scholar 

  10. D. Murphy and J. Hanson, in DNA Cloning, Vol. III, A Practical Approach, Ed. by D.M. Glover (IRL Press, Oxford, Washington DC, 1987), pp. 213–248.

    Google Scholar 

  11. T. P. Lin, Nature 216, 88 (1967).

    Article  Google Scholar 

  12. P. Talbot and P. Dandekar, Microsc. Res. Tech. 61, 349 (2003).

    Article  Google Scholar 

  13. C. F. Garin, H. Heras, and R. J. Pollero, J. Exp. Zool. 6, 307 (1996).

    Article  Google Scholar 

  14. R. P. Kapur and L. V. Johnson, Anat. Rec. 221, 720 (1988).

    Article  Google Scholar 

  15. T. Hoodbhoy and P. Talbot, Mol. Reprod. Dev. 39, 439 (1994).

    Article  Google Scholar 

  16. K. L. Shephard, Comp. Biochem. Physiol. C. 86, 383 (1987).

    Article  Google Scholar 

  17. T. Raz and R. Shalgi, Hum. Reprod. Suppl. 4, 133 (1998).

    Google Scholar 

  18. J. W. Gordon, Methods Enzymol. 225, 207 (1993).

    Article  Google Scholar 

  19. V. A. Bondarev, E. G. Ivanov, V. A. Nikitin, Yu. A. Popov, and A. M. Khokhlov, USSR AC No. 1616680, Byull. Izobret. No. 48 (1987).

  20. K. Illmensee and P. C. Hoppe, Cell 23, 9 (1981).

    Article  Google Scholar 

  21. J. E. Celis, Biochem. J. 223, 281 (1984).

    Google Scholar 

  22. V. A. Nikitin, Manufacture of Microinstruments for Cell Studies (ONTI NTsBI AN SSSR, Pushchino, 1986) [in Russian].

    Google Scholar 

  23. V. N. Larin, V. A. Nikitin, A. M. Khokhlov, A. L. Byzov, and I. N. Pigarev, USSR AC No. 966043, Byull. Izobret. No. 38 (1982).

  24. A. S. Ginsburg, Methods of Developmental Biology (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. R. D. Allen, Exp. Cell Res. 6, 403 (1954).

    Article  ADS  Google Scholar 

  26. W. Ansorge, Exp. Cell Res. 140, 31 (1982).

    Article  Google Scholar 

  27. W. Ansorge and R. Pepperkok, J. Biochem. Biophys. Methods 16, 283 (1988).

    Article  Google Scholar 

  28. M. R. Capecchi, Cell 22, 479 (1980).

    Article  Google Scholar 

  29. D. Freifelder, Physical Biochemistry. Applicationof Physicochemical Methods in Biochemistry and Molecular Biology (Mir, Moscow, 1980).

    Google Scholar 

  30. N. N. Krasikov, N. F. Efremov, and O. G. Us’yarov, Electrosurface Phenomena in Disperse Systems (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  31. D. Perez-Mongiovi, C. Beckhelling, P. Chang, et al., J. Cell Biol. 150, 963 (2000).

    Article  Google Scholar 

  32. A. H. Sathananthan, Histol. Histophathol. 12, 827 (1997).

    Google Scholar 

  33. D. Solter, Nat. Rev. Genet. 1, 199 (2000).

    Article  Google Scholar 

  34. J. B. Gurdon and J. A. Byrne, Proc. Natl. Acad. Sci. USA 100, 8048 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Nikitin, E.E. Fesenko, 2006, published in Biofizika, 2006, Vol. 51, No. 4, pp. 673–678.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, V.A., Fesenko, E.E. The biophysical aspects of reconstructing a single cell by the methods of cell engineering. BIOPHYSICS 51, 615–619 (2006). https://doi.org/10.1134/S0006350906040154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906040154

Key words

Navigation