Skip to main content
Log in

Phylogenetic analysis of the p53 family

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A relationship between the functional significance of individual amino acid residues of p53, their positions in the protein structure, and the mode of the evolution of the codons corresponding to these residues was established. A phylogenetic analysis of the coding sequences of the gene of p53 from 32 vertebrate species was performed. It was found that directional selection affects the codons influencing the efficiency of binding of p53 as a transcription factor to DNA. It was shown that, in conserved codons, the frequency of generative mutations maintaining the normal function of the protein statistically reliably differs from the frequency of mutations with the effects of loss and acquisition of function and the dominant negative effect. The phylogenetic analysis and molecular dynamics simulations also confirmed the functional significance of the residue G245, for which the formation of a Zn2+-binding site in the G245C substitution was previously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Soussi, K. Dehouche, and C. Beroud, Hum. Mutat. 15, 105 (2000).

    Article  Google Scholar 

  2. A. J. Levine, C. A. Finlay, and P. W. Hinds, Cell 116, S67 (2004).

    Article  Google Scholar 

  3. S. N. Rodin and A. S. Rodin, Semin. Cancer. Biol. 15, 103 (2005).

    Article  MathSciNet  Google Scholar 

  4. G. S. Firestein, F. Echeverri, M. Yeo, et al., Proc. Natl. Acad. Sci. USA 94, 10895 (1997).

    Article  ADS  Google Scholar 

  5. M. L. Smith, I. T. Chen, Q. M. Zhan, et al., Science 266, 1376 (1994).

    Article  ADS  Google Scholar 

  6. M. B. Kastan, O. Onyekwere, D. Sidransky, et al., Cancer Res. 51, 6304 (1991).

    Google Scholar 

  7. S. W. Lowe, H. E. Ruley, T. Jacks, and D. E. Housman, Cell 74, 957 (1993).

    Article  Google Scholar 

  8. E. Yonish-Rouach, D. Resnitzky, J. Lotem, et al., Nature 352, 345 (1991).

    Article  ADS  Google Scholar 

  9. A. J. Levine, Cell 88, 323 (1997).

    Article  Google Scholar 

  10. L. A. Donehower, Cancer. Sur. 29, 329 (1997).

    Google Scholar 

  11. F. Amariglio, F. Tchang, M. N. Prioleau, et al., Oncogene 15, 2191 (1997).

    Article  Google Scholar 

  12. J. Prochazkova, V. Lichnovsky, D. Kylarova, et al., Gen. Physiol. Biophys. 23, 209 (2004).

    Google Scholar 

  13. J. B. Wallingford, D. W. Seufert, V. C. Virta, and P. D. Vize, Curr. Biol. 7, 747 (1997).

    Article  Google Scholar 

  14. K. Takebayashi-Suzuki, J. Funami, D. Tokumori, et al., Development 130, 3929 (2003).

    Article  Google Scholar 

  15. A. Jurisicova, K. E. Latham, R. F. Casper, et al., Mol. Reprod. Dev. 51, 243 (1998).

    Article  Google Scholar 

  16. A. Chavez-Reyes, J. M. Parant, L. L. Amelse, et al., Cancer Res. 63, 8664 (2003).

    Google Scholar 

  17. C. D’sa-Eipper, J. R. Leonard, G. Putcha, et al., Development 128, 137 (2001).

    Google Scholar 

  18. V. Lichnovsky, Z. Kolar, P. Murray, et al., Mol. Pathol. 51, 131 (1998).

    Article  Google Scholar 

  19. P. May and E. May, Oncogene 18, 7621 (1999).

    Article  Google Scholar 

  20. C. Saccone, P. O. Barome, A. M. D’Erchia, et al., Gene 300, 195 (2002).

    Article  Google Scholar 

  21. P. J. Waddell, H. Kishino, and R. A. Ota, Genome Inform. Ser. Workshop Genome Inform. 12, 141 (2001).

    Google Scholar 

  22. G. Beckman, R. Birgander, A. Sjalander, et al., Hum. Hered. 44, 266 (1994).

    Google Scholar 

  23. M. J. Ford, Mol. Ecol. 9, 843 (2000).

    Article  Google Scholar 

  24. H. W. Hsu, H. Y. Su, P. H. Huang, et al., Avian Dis. Mar. 49, 36 (2005).

    Article  Google Scholar 

  25. J. Hofmann, M. Renz, S. Meyer, et al., Virus Res. 96, 123 (2003).

    Article  Google Scholar 

  26. Z. Yang and J. P. Bielawski, Trends Ecol. Evol. 15, 496 (2000).

    Article  Google Scholar 

  27. S. Paranjpe and K. Banerjee, Virus Res. 42, 107 (1996).

    Article  Google Scholar 

  28. T. Kulikova, P. Aldebert, N. Althorpe, et al., Nucl. Acids Res. 32, D27 (2004).

    Article  Google Scholar 

  29. S. Guindon and O. Gascuel, Syst. Biol. 52, 696 (2003).

    Article  Google Scholar 

  30. S. Whelan and W. Goldman, Biol. Evol. 18, 691 (1998).

    Google Scholar 

  31. T. Miyata and T. Yasunaga, J. Mol. Evol. 16, 23 (1980).

    Article  Google Scholar 

  32. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

  33. S. Kumar, K. Tamura, and M. Nei, Brief. Bioinform. 5, 150 (2004).

    Article  Google Scholar 

  34. Z. Yang, Comput. Appl. Biosci. 13, 555 (1997).

    Google Scholar 

  35. M. Olivier, R. Eeles, and M. Hollstein, Hum. Mutat. 19, 607 (2002).

    Article  Google Scholar 

  36. V. A. Ivanisenko, S. S. Pintus, D. A. Grigorovich, and N. A. Kolchanov, Nucl. Acids Res. 33, D183 (2005).

    Article  Google Scholar 

  37. D. J. Derbyshire, B. P. Basu, L. C. Serpell, et al., EMBO J. 21, 3863 (2003).

    Article  Google Scholar 

  38. E. Lindahl, B. Hess, and D. J. van der Spoel, Mol. Mod. 7, 306 (2001).

    Google Scholar 

  39. Z. Yang and R. Nielsen, Mol. Biol. Evol. 19, 908 (2002).

    Google Scholar 

  40. Z. Yang, W. J. Swanson, and V. D. Vacquier, Mol. Biol. Evol. 17, 1446 (2000).

    Google Scholar 

  41. M. S. Springer, W. J. Murphy, and E. Eizirik, Proc. Natl. Acad. Sci. USA 100, 1056 (2003).

    Article  ADS  Google Scholar 

  42. O. N. Aurelio, X. T. Kong, S. Gupta, and E. J. Stanbridge, Mol. Cell. Biol. 20, 770 (2000).

    Article  Google Scholar 

  43. M. V. Blagosklonny, FASEB J. 14, 1901 (2000).

    Article  Google Scholar 

  44. A. Gualberto, K. Aldape, K. Kozakiewicz, and T. D. Tlsty, Proc. Natl. Acad. Sci. USA 95, 5166 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.S. Pintus, E.S. Fomin, V.A. Ivanisenko, N.A. Kolchanov, 2006, published in Biofizika, 2006, Vol. 51, No. 4, pp. 640–649.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pintus, S.S., Fomin, E.S., Ivanisenko, V.A. et al. Phylogenetic analysis of the p53 family. BIOPHYSICS 51, 571–580 (2006). https://doi.org/10.1134/S0006350906040099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350906040099

Key words

Navigation