Skip to main content
Log in

Interstitial telomeric repeats as markers of evolutionary changes in the mammalian karyotype: Human chromosome 2

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The presence of conserved telomeric repeats represented by the hexamer (TTAGGG)n at the chromosomal termini is necessary for the correct functioning and stability of chromosomes. A number of the genomes of mammals, including human, are known to contain interstitial telomeric sequences located far from the chromosomal termini. It is assumed that these repeats mark the regions of fusions or other rear-rangements of ancestral chromosomes. Exact localization of all interstitial telomeric sequences in the genome could significantly advance the understanding of the mechanisms of karyotype evolution and speciation. In this context, software was developed to search for degenerate interstitial telomeric repeats in complete sequences of mammalian chromosomes. The evolutionary significance of such repeats was demonstrated by the example of human chromosome 2. The results are available at http://www.bionet.nsc.ru/labs/theorylabmain/orlov/telomere/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ITS:

intrachromosomal telomeric sequences

References

  1. J. Meyne, R. J. Baker, and H. H. Hobart, Chromosoma 99, 3 (1990).

    Article  Google Scholar 

  2. H. Biessmann and J. M. Mason, Adv. Genet. 30, 185 (1992).

    Google Scholar 

  3. J. Meyne, R. L. Ratliff, and R. K. Moyis, Proc. Natl. Acad. Sci. USA 86, 7049 (1989).

    Article  ADS  Google Scholar 

  4. C. Sena, B. P. Chowdhary, and I. Gustavsson, Hereditas 123(3), 269 (1995).

    Article  Google Scholar 

  5. C. J. Metcalfe, M. D. Eldridge, L. R. McQuade, and P. G. Johnston, Cytogenet. Cell Genet. 78, 74 (1997).

    Article  Google Scholar 

  6. J. W. Ijdo, A. Baldini, D. C. Ward, et al., Proc. Natl. Acad. Sci. USA 88, 9051 (1991).

    Article  ADS  Google Scholar 

  7. A. S. Multani, M. Ozen, C. L. Furlong, et al., Chromosoma 110(3), 214 (2001).

    Google Scholar 

  8. C. M. Azzalin, E. Mucciolo, L. Bertoni, and E. Guilotto, Cytogenet. Cell Genet. 78, 112 (1997).

    Google Scholar 

  9. A. Ruiz-Herrera, M. Ponsa, F. Garcia, et al., Chromosome Res. 10, 33 (2002).

    Article  Google Scholar 

  10. A. Ruiz-Herrera, F. Garcia, E. Guilotto, et al., Cytogenet. Genome Res. 108, 234 (2005).

    Article  Google Scholar 

  11. C. M. Azzalin, S. G. Nergadze, and E. Guilotto, Chromosoma 110, 75 (2001).

    Google Scholar 

  12. S. G. Nergadze, M. Rocchi, C. M. Azzalin, et al., Genome Res. 14(9), 1704 (2004).

    Article  Google Scholar 

  13. J. D. Thompson, D. G. Higgins, and T. J. Gibson, Nucl. Acids Res. 22, 4673 (1994).

    Article  Google Scholar 

  14. G. Benson, Nucl. Acids Res. 27(2), 573 (1999).

    Article  MathSciNet  Google Scholar 

  15. Y. Fan, E. Linardopoulou, C. Friedman, et al., Genome Res. 12, 1651 (2002).

    Article  Google Scholar 

  16. W. Murphy, D. Larkin, A. Everts-van der Wind, et al., Science 309, 613 (2005).

    Article  ADS  Google Scholar 

  17. J. J. Yunis and O. Prakash, Science 215, 1525 (1982).

    Article  ADS  Google Scholar 

  18. R. L. Stauffer, A. Walker, O. Ryder, et al., J. Hered. 92, 469 (2001).

    Article  Google Scholar 

  19. F. Kasai, E. Takahashi, K. Koyama, et al., Chromosome Res. 8, 727 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.V. Vorob’eva, L.S. Biltueva, Yu.L. Orlov, A.S. Grafodatskii, N.A. Kolchanov, 2006, published in Biofizika, 2006, Vol. 51, No. 4, pp. 602–607.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorob’eva, N.V., Biltueva, L.S., Orlov, Y.L. et al. Interstitial telomeric repeats as markers of evolutionary changes in the mammalian karyotype: Human chromosome 2. BIOPHYSICS 51, 535–540 (2006). https://doi.org/10.1134/S000635090604004X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635090604004X

Key words

Navigation