Skip to main content
Log in

Hypobiosis of Mycobacteria: Biochemical Aspects

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Under suboptimal growth conditions, bacteria can transit to the dormant forms characterized by a significantly reduced metabolic activity, resistance to various stress factors, and absence of cell proliferation. Traditionally, the dormant state is associated with the formation of highly differentiated cysts and spores. However, non-spore-forming bacteria can transfer to the dormant-like hypobiotic state with the generation of less differentiated cyst-like forms (which are different from spores). This review focuses on morphological and biochemical changes occurred during formation of dormant forms of mycobacteria in particular pathogenic M. tuberculosis (Mtb) caused latent forms of tuberculosis. These forms are characterized by the low metabolic activity, the absence of cell division, resistance to some antibiotics, marked morphological changes, and loss of ability to grow on standard solid media (“non-culturable” state). Being produced in vitro, dormant Mtb retained ability to maintain latent infection in mice. After a long period of dormancy, mycobacteria retain a number of stable proteins with a potential enzymatic activity which could participate in maintaining of low-level metabolic activity in period of dormancy. Indeed, the metabolomic analysis showed significant levels of metabolites in the dormant cells even after a long period of dormancy, which may be indicative of residual metabolism in dormant mycobacteria. Special role may play intracellularly accumulated trehalose in dormant mycobacteria. Trehalose appears to stabilize dormant cells, as evidenced by the direct correlation between the trehalose content and cell viability during the long-term dormancy. In addition, trehalose can be considered as a reserve energy substrate consumed during reactivation of dormant mycobacteria due to the ATP-dependent conversion of trehalase from the latent to the active state. Another feature of dormant mycobacteria is a high representation of proteins participating in the enzymatic defense against stress factors and of low-molecular-weight compounds protecting cells in the absence of replication. Dormant mycobacteria contain a large number of hydrolyzing enzymes, which, on the one hand, ensure inactivation of biomolecules damaged by stress. On the other hand, the products of these enzymatic reactions can be used for the maintenance of energy state and vital activity of bacterial cells during their long-term survival in the dormant state, i.e., for creating a situation that we propose to refer to as the “catabolic survival”. In general, dormant non-replicating mycobacterial cells can be described as morphologically altered forms that contain principal macromolecules and are stabilized and protected from the damaging factors by an arsenal of proteins and low-molecular-weight compounds. Because of the presumable occurrence of metabolic reactions in such cells, this form of survival should be referred to as hypobiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

CFU:

colony-forming unit

Msm :

Mycobacterium smegmatis

Mtb :

Mycobacterium tuberculosis

MPN:

Most Probable Number

ROS:

reactive oxygen species

TB:

tuberculosis

VBNC:

viable but “non-culturable”

References

  1. Bukharin, O. V., Gintsburg, A. L., Romanova, Yu. M., and El-Registan, G. I. (2005) Mechanisms of Bacterial Survival [in Russian], Meditsina, Moscow.

  2. Mulyukin, A. L., Demkina, E. V., Kryazhevskikh, N. A., Suzina, N. E., Vorobjeva, L. I., Duda, V. I., Galchenko, V. F., and El-Registan, G. I. (2009) Dormant forms of Micrococcus luteus and Arthrobacter globiformis, not germinating on standard media, Mikrobiologiya, 78, 407-418, https://doi.org/10.1134/S0026261709040031.

    Article  CAS  Google Scholar 

  3. Chao, M. C., and Rubin, E. J. (2010) Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol., 64, 293-311, https://doi.org/10.1146/annurev.micro.112408.134043.

    Article  CAS  PubMed  Google Scholar 

  4. Gutti, G., Arya, K., and Singh, S. K. (2019) Latent tuberculosis infection (LTBI) and its potential targets: an investigation into dormant phase pathogens, Mini Rev. Med. Chem., 19, 1627-1642, https://doi.org/10.2174/1389557519666190625165512.

    Article  CAS  PubMed  Google Scholar 

  5. Sussman, A. S. (1969) The dormancy and germination of fungus spores, Symp. Soc. Exp. Biol., 23, 99-121.

    CAS  PubMed  Google Scholar 

  6. Sussman, A. S., and Halvorson, H. O. (1966) Spores: Their Dormancy and Germination, Harper & Row, New York, 354 p.

  7. Kalakoutskii, L. V., and Agre, N. S. (1977) Development of Actinomycetes [in Russian], Nauka, Moscow.

  8. Loyko, N. G., Soina, V. S., Sorokin, D. Yu., Mityushkina, L. L., and El-Registan, G. I. (2003) Formation of dormant forms of chemolithoautotrophic bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum, Mikrobiologiya, 72, 328-337.

    Google Scholar 

  9. Bisset, K. A. (1950) Evolution in bacteria and the significance of the bacterial spore, Nature, 166, 431-432, https://doi.org/10.1038/166431b0.

    Article  CAS  PubMed  Google Scholar 

  10. Demkina, E. V., Soina, V. S., and El-Registan, G. I. (2000) Formation of dormant forms of Arthrobacter globiformis in autolyzing suspensions, Mikrobiologiya, 69, 314-318, https://doi.org/10.1007/BF02756740.

    Article  CAS  Google Scholar 

  11. Demkina, E. V., Soina, V. S., El-Registan, G. I., and Zvyagintsev, D. G. (2000) Reproductive dormant forms of Arthrobacter globiformis, Mikrobiologiya, 69, 309-313, https://doi.org/10.1007/BF02756739.

    Article  CAS  Google Scholar 

  12. El-Registan, G. I., Duda, V. I., Kozlova, A. N., Mityshkina, L. L., and Poplaukhina, O. G. (1979) The change in constructive metabollism and ultrastructural organization of Bacillus cereus cells under the exposure to specific autoregulatory factor, Mikrobiologiya, 48, 240-244.

    CAS  Google Scholar 

  13. Bakken, L. R., and Olsen, R. A. (1987) The relationship between cell size and viability of soil bacteria, Microb. Ecol., 13, 103-114, https://doi.org/10.1007/BF02011247.

    Article  CAS  PubMed  Google Scholar 

  14. McDougald, D., Rice, S. A., Weichart, D., and Kjelleberg, S. (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol., 25, 1-9, https://doi.org/10.1111/j.1574-6941.1998.tb00455.x.

    Article  CAS  Google Scholar 

  15. Somova, L. M., Buzoleva, L. S., Isachenko, A. S., and Somov, G. P. (2006) Adaptive changes in the soil bacterium Yersinia pseudotuberculosis, Zhurn. Mikrobiol. Epidemiol. Immunobiol., 3, 36-40.

    Google Scholar 

  16. Sikri, K., and Tyagi, J. S. (2013) The evolution of Mycobacterium tuberculosis dormancy models, Curr. Sci., 105, 607-616.

    CAS  Google Scholar 

  17. Wayne, L. G., and Hayes, L. G. (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence, Infect. Immun., 64, 2062-2069, https://doi.org/10.1128/iai.64.6.2062-2069.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shleeva, M. O., Kudykina, Yu. K., Vostroknutova, G. N., Suzina, N. E., Mulyukin, A. L., and Kaprelyants, A. S. (2011) Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification, Tuberculosis, 91, 146-154, https://doi.org/10.1016/j.tube.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  19. Oliver, J. D. (2009) Recent findings on the viable but nonculturable state in pathogenic bacteria, FEMS Microbiol. Rev., 34, 415-425, https://doi.org/10.1111/j.1574-6976.2009.00200.x.

    Article  CAS  PubMed  Google Scholar 

  20. Kaprelyants, A., Gottschal, J., and Kell, D. (1993) Dormancy in non-sporulating bacteria, FEMS Microbiol. Rev., 104, 271-285, https://doi.org/10.1111/j.1574-6968.1993.tb05871.x.

    Article  CAS  Google Scholar 

  21. Kaprelyants, A., and Kell, D. (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation, Appl. Environ. Microbiol., 59, 3187-3196, https://doi.org/10.1128/aem.59.10.3187-3196.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oliver, J. D. (2005) The viable but nonculturable state in bacteria, J. Microbiol., 43, 93-100.

    PubMed  Google Scholar 

  23. Barer, M. R. (1997) Viable but non-culturable and dormant bacteria: time to resolve an oxymoron and a misnomer? J. Med. Microbiol., 46, 629-631, https://doi.org/10.1099/00222615-46-8-629.

    Article  CAS  PubMed  Google Scholar 

  24. Barer, M. R., and Harwood, C. R. (1999) Bacterial viability and culturability, Adv. Microb. Physiol., 41, 93-137, https://doi.org/10.1016/S0065-2911(08)60166-6.

    Article  CAS  PubMed  Google Scholar 

  25. Barer, M. R., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R., and Kell, D. B. (1998) Microbial stress and culturability: conceptual and operational domains, Microbiology, 144, 2009-2010, https://doi.org/10.1099/00221287-144-8-2009.

    Article  CAS  PubMed  Google Scholar 

  26. Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R., and Barer, M. R. (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues, Antonie van Leeuwenhoek, 73, 169-187, https://doi.org/10.1023/A:1000664013047.

    Article  CAS  PubMed  Google Scholar 

  27. Nyström, T. (2003) Conditional senescence in bacteria: death of the immortals, Mol. Microbiol., 48, 17-23, https://doi.org/10.1046/j.1365-2958.2003.03385.x.

    Article  PubMed  Google Scholar 

  28. Kolter, R., Siegele, D. A., and Tormo, A. (1993) The stationary phase of the bacterial life cycle, Annu. Rev. Microbiol., 47, 855-874, https://doi.org/10.1146/annurev.mi.47.100193.004231.

    Article  CAS  PubMed  Google Scholar 

  29. Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms Involved in control of the sigmaS (RpoS) subunit of RNA polymerase, Microbiol. Mol. Biol. Rev., 66, 373-395, https://doi.org/10.1128/MMBR.66.3.373-395.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Farewell, A., Kvint, K., and Nyström, T. (1998) Negative regulation by RpoS: a case of sigma factor competition, Mol. Microbiol., 29, 1039-1051, https://doi.org/10.1046/j.1365-2958.1998.00990.x.

    Article  CAS  PubMed  Google Scholar 

  31. Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., and Nyström, T. (2000) Protein oxidation in response to increased transcriptional or translational errors, Proc. Natl. Acad. Sci. USA, 97, 5746-5749, https://doi.org/10.1073/pnas.100422497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nyström, T. (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death, Arch. Microbiol., 176, 159-164, https://doi.org/10.1007/s002030100314.

    Article  PubMed  Google Scholar 

  33. Nyström, T. (2003) Nonculturable bacteria: programmed survival forms or cells at death’s door? BioEssays, 25, 204-211, https://doi.org/10.1002/bies.10233.

    Article  CAS  PubMed  Google Scholar 

  34. Dukan, S., and Nyström, T. (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells, J. Biol. Chem., 274, 26027-26032, https://doi.org/10.1074/jbc.274.37.26027.

    Article  CAS  PubMed  Google Scholar 

  35. Gerdes, K., Gultyaev, A. P., Franch, T., and Mikkelsen, N. D. (1997) Antisense RNA-regulated programmed cell death, Annu. Rev. Genet., 3, 1-31, https://doi.org/10.1146/annurev.genet.31.1.1.

    Article  Google Scholar 

  36. Gerdes, K., Christensen, S. K., and Løbner-Olesen, A. (2005) Prokaryotic toxin-antitoxin stress response loci, Nat. Rev. Microbiol., 3, 371-382, https://doi.org/10.1038/nrmicro1147.

    Article  CAS  PubMed  Google Scholar 

  37. Aizenman, E., Engelberg-Kulka, H., and Glaser, G. (1996) An Escherichia coli chromosomal “addiction module” regulated by 3′,5′-bispyrophosphate: a model for programmed bacterial cell death, Proc. Natl. Acad. Sci. USA, 93, 6059-6063, https://doi.org/10.1073/pnas.93.12.6059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedersen, K., Christensen, S. K., and Gerdes, K. (2002) Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins, Mol. Microbiol., 45, 501-510, https://doi.org/10.1046/j.1365-2958.2002.03027.x.

    Article  CAS  PubMed  Google Scholar 

  39. Currás, M., Magariños, B., Toranzo, A. E., and Romalde, J. L. (2002) Dormancy as a survival strategy of the fish pathogen Streptococcus parauberis in the marine environment, Dis. Aquatic Organisms, 52, 129-136, https://doi.org/10.3354/dao052129.

    Article  Google Scholar 

  40. Mukamolova, G., Kaprelyants, A. S., Kell, D. B., and Young, M. (2003) Adoption of the transiently non-culturable state – a bacterial survival strategy? Adv. Microb. Physiol., 47, 65-129, https://doi.org/10.1016/S0065-2911(03)47002-1.

    Article  CAS  PubMed  Google Scholar 

  41. Roszak, D. B., and Colwell, R. R. (1987) Survival strategies of bacteria in the natural environment, Microbiol. Rev., 51, 365-379, https://doi.org/10.1128/mr.51.3.365-379.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roszak, D. B., and Colwell, R. R. (1987) Metabolic activity of bacterial cells enumerated by direct viable count, Appl. Environ. Microbiol., 53, 2889-2893, https://doi.org/10.1128/aem.53.12.2889-2893.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gunasekera, T. S., Sørensen, A., Attfield, P. V., Sørensen, S. J., and Duncan, A. V. (2002) Inducible gene expression by nonculturable bacteria in milk after pasteurization, Appl. Environ. Microbiol., 68, 1988-1993, https://doi.org/10.1128/AEM.68.4.1988-1993.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliver, J. D., Dagher, M., and Linden, K. (2005) Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater, J. Water Health, 3, 249-257, https://doi.org/10.2166/wh.2005.040.

    Article  CAS  PubMed  Google Scholar 

  45. Aulet, O., Silva, C., Fraga, S. G., Pichel, M., Cangemi, R., Gaudioso, C., Porcel, N., Jure, M. A., De Castillo, M. C., and Binsztein, N. (2007) Detection of viable and viable nonculturable Vibrio cholerae O1 through cultures and immunofluorescence in the Tucumán rivers, Argentina, Revista da Sociedade Brasileira de Medicina Tropical, 40, 385-390, https://doi.org/10.1590/S0037-86822007000400002.

    Article  PubMed  Google Scholar 

  46. Solokhina, L. V., Pushkareva, V. I., and Litvin, V. Yu. (2001) Formation of dormant forms and variability of Yersinia pseudotuberculosis under the influence of blue-green algae (cyanobacteria) and their exometabolites, Zhurn. Mikrobiol. Epidemiol. Immunobiol., 3, 17-22.

    Google Scholar 

  47. Romanova, Yu. M., Chegayeva, E. V., and Gintsburg, A. L. (1998) Nonculturable state in pathogenic bacteria: the known and possible factors of induction of reversible process, Mol. Genet. Mikrobiol. Virusol., 3, 3-8.

    Google Scholar 

  48. Nikoleishvili, L. R., and Podosinnikova, L. S. (2004) Transition of cholera vibrios into nonculturable state under the influence of some abiotic factors, Fundamental'nye Issledovaniya, 2, 18-21.

    Google Scholar 

  49. Lee, D. G., Park, S. J., and Kim, S. J. (2007) Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system, J. Microbiol. Biotechnol., 17, 1558-1562.

    CAS  PubMed  Google Scholar 

  50. Tholozan, J. L., Cappelier, J. M., Tissier, J. P., Delattre, G., and Federighi, M. (1999) Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells, Appl. Environ. Microbiol., 65, 1110-1116, https://doi.org/10.1128/AEM.65.3.1110-1116.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heidelberg, J. F., Shahamat, M., Levin, M., Rahman, I., Stelma, G., Grim, C., and Colwell, R. R. (1997) Effect of aerosolization on culturability and viability of gram-negative bacteria, Appl. Environ. Microbiol., 63, 3585-3588, https://doi.org/10.1128/aem.63.9.3585-3588.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bode, G., Mauch, F., and Malfertheiner, P. (1993) The coccoid forms of Helicobacter pylori. Criteria for their viability, Epidemiol. Infect., 111, 483-490, https://doi.org/10.1017/S0950268800057216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cellini, L., Marzio, L., Allocati, N., Dainelli, B., Lezzi, T., Angelucci, D., and Campli, E. D. (1994) Coccoid Helicobacter pylori not culturable in vitro reverts in mice, Microbiol. Immunol., 38, 843-850, https://doi.org/10.1111/j.1348-0421.1994.tb02136.x.

    Article  CAS  PubMed  Google Scholar 

  54. Ganesan, B., Stuart, M. R., and Weimer, B. C. (2007) Carbohydrate starvation causes a metabolically active but nonculturable state in Lactococcus lactis, Appl. Environ. Microbiol., 3, 2498-2512, https://doi.org/10.1128/AEM.01832-06.

    Article  CAS  Google Scholar 

  55. Porter, J., Edwards, C., and Pickup, R. W. (1995) Rapid assessment of physiological status in Escherichia coli using fluorescent probes, J. Appl. Bacteriol., 79, 399-408, https://doi.org/10.1111/j.1365-2672.1995.tb03154.x.

    Article  CAS  PubMed  Google Scholar 

  56. Smith, B., and Oliver, J. D. (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state, Appl. Environ. Microbiol., 72, 1445-1451, https://doi.org/10.1128/AEM.72.2.1445-1451.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saux, M. F., Hervio-heath, D., Loaec, S., Colwell, R. R., and Pommepuy, M. (2002) Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater, Appl. Environ. Microbiol., 68, 5641-5646, https://doi.org/10.1128/AEM.68.11.5641-5646.2002.

    Article  CAS  PubMed Central  Google Scholar 

  58. Rahman, I., Shahamat, M., Chowdhury, M. A. R., and Colwell, R. R. (1996) Potential virulence of viable but nonculturable Shigella dysenteriae type 1, Appl. Environ. Microbiol., 62, 115-120, https://doi.org/10.1128/aem.62.1.115-120.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Signoretto, C., Lleò, M. D. M., and Canepari, P. (2002) Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state, Curr. Microbiol., 44, 125-131, https://doi.org/10.1007/s00284-001-0062-0.

    Article  CAS  PubMed  Google Scholar 

  60. Maalej, S., Gdoura, R., Dukan, S., Hammami, A., and Bouain, A. (2004) Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature, J. Appl. Microbiol., 97, 557-565, https://doi.org/10.1111/j.1365-2672.2004.02336.x.

    Article  CAS  PubMed  Google Scholar 

  61. Vora, G. J., Meador, C. E., Bird, M. M., Bopp, Ch. A., Andreadis, J. D., and Stenger, D. A. (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp., Proc. Natl. Acad. Sci. USA, 102, 19109-19114, https://doi.org/10.1073/pnas.0505033102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haque, M. M., Khan, S. I., and Ahsan, C. R. (1970) Influence of some physicochemical stresses on the survival of Vibrio cholerae O1 at non-culturable state, Bangladesh J. Microbiol., 24, 133-136, https://doi.org/10.3329/bjm.v24i2.1258.

    Article  Google Scholar 

  63. Medlar, E. M., Bernstein, S., and Steward, D. M. (1952) A bacteriologic study of resected tuberculous lesions, Am. Rev. Tuberculos., 66, 36-43.

    CAS  Google Scholar 

  64. Beck, F., and Yegian, D. (1952) A study of the tubercle bacillus in resected pulmonary lesions, Am. Rev. Tuberculos., 66, 44-51.

    CAS  Google Scholar 

  65. Khomenko, A., and Golyshevskaya, V. (1984) Filtrable forms of mycobacteria tuberculosis, Zeitschrift für Erkrankungen der Atmungsorgane, 162, 147-154.

    CAS  PubMed  Google Scholar 

  66. Biketov, S., Mukamolova, G. V., Potapov, V., Gilenkov, E., Vostroknutova, G., Kell, D. B., Young, M., and Kaprelyants, A. S. (2000) Culturability of Mycobacterium tuberculosis cells isolated from murine macrophages: a bacterial growth factor promotes recovery, FEMS Immunol. Med. Microbiol., 29, 233-240, https://doi.org/10.1111/j.1574-695X.2000.tb01528.x.

    Article  CAS  PubMed  Google Scholar 

  67. Dhillon, J., Lowrie, D. B., and Mitchison, D. A. (2004) Mycobacterium tuberculosis from chronic murine infections that grows in liquid but not on solid medium, BMC Infect. Dis., 4, 4-7, https://doi.org/10.1186/1471-2334-4-51.

    Article  Google Scholar 

  68. McCune, R. M., Feldmann, F. M., Lambert, H. P., and McDermott, W. (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues, J. Exp.Med., 123, 445-468, https://doi.org/10.1084/jem.123.3.445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McCune, R. M., McDermott, W., and Tompsett, R. (1956) The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug, J. Exp.Med., 104, 763-802, https://doi.org/10.1084/jem.104.5.763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Wit, D., Wootton, M., and Mitchison, D. A. (1995) The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis, Tubercle Lung Dis., 76, 555-562, https://doi.org/10.1016/0962-8479(95)90534-0.

    Article  CAS  Google Scholar 

  71. Lillebaek, T., Dirksen, A., Baess, I., Strunge, B., Thomsen, V. Ø., and Andersen, Å. B. (2002) Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection, J. Infect. Dis., 185, 401-404, https://doi.org/10.1086/338342.

    Article  CAS  PubMed  Google Scholar 

  72. Ehlers, S. (2009) Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis, Infection, 37, 87-95, https://doi.org/10.1007/s15010-009-8450-7.

    Article  CAS  PubMed  Google Scholar 

  73. Salgame, P., Geadas, C., Collins, L., Jones-l, E., and Ellner, J. J. (2015) Latent tuberculosis infection – revisiting and revising concepts, Tuberculosis, 95, 373-384, https://doi.org/10.1016/j.tube.2015.04.003.

    Article  PubMed  Google Scholar 

  74. Sia, I. G., and Wieland, M. L. (2011) Current concepts in the management of tuberculosis, Mayo Clin. Proceed., 86, 348-361, https://doi.org/10.4065/mcp.2010.0820.

    Article  CAS  Google Scholar 

  75. Opie, E. (1927) Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions, Arch. Pathol. Lab. Med., 4, 1-21.

    Google Scholar 

  76. Lillebaek, T., Dirksen, A., Vynnycky, E., Baess, I., Thomsen, V. O., and Andersen, Å. B. (2003) Stability of DNA patterns and evidence of Mycobacterium tuberculosis reactivation occurring decades after the initial infection, J. Infect. Dis., 188, 1032-1039, https://doi.org/10.1086/378240.

    Article  CAS  PubMed  Google Scholar 

  77. Wallis, R. S., Patil, Sh., Cheon, S., Edmonds, K. A. Y., Phillips, M., Perkins, M. D., Joloba, M., Namale, A., Johnson, J. L., Teixeira, L., Dietze, R., Siddiqi, S., Mugerwa, R., Eisenach, K., and Ellner, J. J. (1999) Drug Tolerance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 43, 2600-2606, https://doi.org/10.1128/AAC.43.11.2600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hirsch, C., Ellner, J. J., Russell, D. G., and Rich, E. A. (1994) Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages, J. Immunol., 152, 743-753, https://doi.org/10.4049/jimmunol.152.2.743.

    Article  CAS  PubMed  Google Scholar 

  79. Russell, D. G. (2007) Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol., 5, 39-47, https://doi.org/10.1038/nrmicro1538.

    Article  CAS  PubMed  Google Scholar 

  80. Saunders, B. M., and Britton, W. J. (2007) Life and death in the granuloma: immunopathology of tuberculosis, Immunol. Cell Biol., 85, 103-111, https://doi.org/10.1038/sj.icb.7100027.

    Article  PubMed  Google Scholar 

  81. Via, L. E., Lin, P. L., Ray, S. M., Carrillo, J., Allen, S. S., Eum, S. Y., Taylor, K., Klein, E., Manjunatha, U., Gonzales, J., Lee, E. G., Park, S. K., Raleigh, J. A., Cho, S. N., Mcmurray, D. N., Flynn, J. L., and Barry, III, C. E. (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates, Infect. Immun., 76, 2333-2340, https://doi.org/10.1128/IAI.01515-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schnappinger, D., Ehrt, S., Voskuil, M. I., Liu, Y., Mangan, J. A., Monahan, I. M., Dolganov, G., Efron, B., Butcher, P. D., Nathan, C., and Schoolnik, G. K. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment, J. Exp. Med., 198, 693-704, https://doi.org/10.1084/jem.20030846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bukharin, O. V. (2008) Persistence of bacterial pathogens as a physiological phenomenon, Vestn. Mosk. Univ., 16, 6-13.

    Google Scholar 

  84. Bigger, J. W. (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation, J. Chem. Inform. Model., 244, 497-500, https://doi.org/10.1016/S0140-6736(00)74210-3.

    Article  Google Scholar 

  85. McDermott, W. (1969) Microbial persistence, Harvey Lectures, 63, 1-31.

    CAS  PubMed  Google Scholar 

  86. Lewis, K. (2007) Persister cells, dormancy and infectious disease, Nat. Rev. Microbiol., 5, 48-56, https://doi.org/10.1038/nrmicro1557.

    Article  CAS  PubMed  Google Scholar 

  87. Rieger, M., Mauch, H., and Hakenbeck, R. (2017) Long persistence of a Streptococcus pneumoniae 23F clone in a cystic fibrosis patient, mSphere, 2, e00201-17, https://doi.org/10.1128/mSphere.00201-17.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004) Bacterial persistence as a phenotypic switch, Science, 305, 1622-1625, https://doi.org/10.1126/science.1099390.

    Article  CAS  PubMed  Google Scholar 

  89. Yogeswari, L., and Chacko, C. W. (1971) Persistence of T. pallidum and its significance in penicillin-treated seropositive late syphilis, Br. J. Vener. Dis., 47, 339-347, https://doi.org/10.1136/sti.47.5.339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wood, D. N., Chaussee, M. A., Chaussee, M. S., and Buttaro, B. A. (2005) Persistence of Streptococcus pyogenes in stationary-phase cultures, J. Bacteriol., 187, 3319-3328, https://doi.org/10.1128/JB.187.10.3319-3328.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tuomanen, E. (1986) Phenotypic tolerance: the search for 3-lactam antibiotics that kill nongrowing bacteria, Rev. Infect. Dis., 8, 279-291, https://doi.org/10.1093/clinids/8.Supplement_3.S279.

    Article  Google Scholar 

  92. Ford, C., Lin, P. L., Chase, M. R., Shah, R., Iartchouk, O., Galagan, J., Mohaideen, N., Ioerger, T. R., Sacchettini, J. C., Lipsitch, M., Flynn, J. L., and Fortune, S. M. (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection, Nat. Genet., 43, 482-486, https://doi.org/10.1038/ng.811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Colangeli, R., Arcus, V. L., Cursons, R. T., Ruthe, A., Karalus, N., Coley, K., Manning, S. D., Kim, S., Marchiano, E., and Alland, D. (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans, PLoS One, 9, e91024, https://doi.org/10.1371/journal.pone.0091024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y., and Amzel, L. (2005) Tuberculosis drug targets, Curr. Drug Targets, 3, 131-154, https://doi.org/10.2174/1389450024605391.

    Article  Google Scholar 

  95. Zhang, Y. (2004) Persistent and dormant tubercle bacilli and latent tuberculosis, Front. Biosci., 9, 1136-1156, https://doi.org/10.2741/1291.

    Article  CAS  PubMed  Google Scholar 

  96. Loebel, R. O., Shorr, E., and Richardson, H. B. (1933) The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli, J. Bacteriol., 26, 139-166, https://doi.org/10.1128/jb.26.2.139-166.1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salina, E. G., Waddell, S. J., Hoffmann, N., Rosenkrands, I., Butcher, P. D., and Kaprelyants, A. S. (2014) Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states, Open Biol., 4, 140106, https://doi.org/10.1098/rsob.140106.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Betts, J. C., Lukey, P. T., Robb, L. C., Mcadam, R. A., and Duncan, K. (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling, Mol. Microbiol., 43, 717-731, https://doi.org/10.1046/j.1365-2958.2002.02779.x.

    Article  CAS  PubMed  Google Scholar 

  99. Hobby, G. L., and Lenert, T. F. (1957) The in vitro action of antituberculous agents against multiplying and non-multiplying microbial cells, Am. Rev. Tuberc., 76, 1031-1048.

    CAS  PubMed  Google Scholar 

  100. Deb, C., Lee, C., Dubey, V. S., Daniel, J., Abomoelak, B., Tatiana, D., Pawar, S., Rogers, L., and Kolattukudy, P. E. (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen, PLoS One, 4, e6077, https://doi.org/10.1371/journal.pone.0006077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wayne, L., and Sohaskey, C. (2001) Nonreplicating persistence of Mycobacterium tuberculosis, Annu. Rev. Microbiol., 55, 139-163, https://doi.org/10.1146/annurev.micro.55.1.139.

    Article  CAS  PubMed  Google Scholar 

  102. Welin, A., Raffetseder, J., Eklund, D., Stendahl, O., and Lerm, M. (2011) Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages, J. Innate Immun., 3, 508-518, https://doi.org/10.1159/000325297.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kudykina, Y. K., Shleeva, M. O., Artsabanov, V. Yu., Suzina, N. E., and Kaprelyants, A. S. (2011) Generation of dormant forms by Mycobacterium smegmatis in the poststationary phase during gradual acidification of the medium, Mikrobiologiia, 80, 638-649, https://doi.org/10.1134/S0026261711050080.

    Article  CAS  Google Scholar 

  104. Eruslanov, E. B., Majorov, K. B., Orlova, M. O., Mischenko, V. V., Kondratieva, T. K., Apt, A. S., and Lyadova, I. V. (2004) Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge, Clin. Exp. Immunol., 135, 19-28, https://doi.org/10.1111/j.1365-2249.2004.02328.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shleeva, M., Kondratieva, T., Rubakova, E., Vostroknutova, G., Kaprelyants, A., and Apt, A. (2015) Reactivation of dormant “non-culturable” Mycobacterium tuberculosis developed invitro after injection in mice: both the dormancy depth and host genetics influence the outcome, Microb. Pathogen., 78, 63-66, https://doi.org/10.1016/j.micpath.2014.11.016.

    Article  Google Scholar 

  106. Kondratieva, T., Shleeva, M., Kapina, M., Rubakova, E., Linge, I., Dyatlov, A., Kondratieva, E., Kaprelyants, A., and Apt, A. (2020) Prolonged infection triggered by dormant Mycobacterium tuberculosis: immune and inflammatory responses in lungs of genetically susceptible and resistant mice, PLoS One, 15, e0239668, https://doi.org/10.1371/journal.pone.0239668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Trutneva, K. A., Shleeva, M. O., Demina, G. R., Vostroknutova, G. N., and Kaprelyans, A. S. (2020) One-year old dormant, “non-culturable” Mycobacterium tuberculosis preserves significantly diverse protein profile, Front. Cell. Infect. Microbiol., 10, 26, https://doi.org/10.3389/fcimb.2020.00026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shleeva, M. O., Kondratieva, T. K., Demina, G. R., Rubakova, E. I., Goncharenko, A. V., Apt, A. S., and Kaprelyants, A. S. (2017) Overexpression of adenylyl cyclase encoded by the Mycobacterium tuberculosis Rv2212 gene confers improved fitness, accelerated recovery from dormancy and enhanced virulence in mice, Front. Cell. Infect. Microbiol., 7, 370, https://doi.org/10.3389/fcimb.2017.00370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Trutneva, K., Shleeva, M., Nikitushkin, V., Demina, G., and Kaprelyants, A. (2018) Protein composition of Mycobacterium smegmatis differs significantly between active cells and dormant cells with ovoid morphology, Front. Microbiol., 9, 2083, https://doi.org/10.3389/fmicb.2018.02083.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nikitushkin, V. D., Trenkamp, S., Demina, G. R., Shleeva, M. O., and Kaprelyants, A. S. (2020) Metabolic profiling of dormant Mycolicibacterium smegmatis cells’ reactivation reveals a gradual assembly of metabolic processes, Metabolomics, 16, 24, https://doi.org/10.1007/s11306-020-1645-8.

    Article  CAS  PubMed  Google Scholar 

  111. Shleeva, M. O., Trutneva, K. A., Demina, G. R., Zinin, A. I., Sorokoumova, G. M., Laptinskaya, P. K., Shumkova, E. S., and Kaprelyants, A. S. (2017) Free trehalose accumulation in dormant Mycobacterium smegmatis cells and its breakdown in early resuscitation phase, Front. Microbiol., 8, 524, https://doi.org/10.3389/fmicb.2017.00524.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nikitushkin, V. D., Shleeva, M. O., Zinin, A. I., Trutneva, K. A., Ostrovsky, D. N., and Kaprelyants, A. S. (2016) The main pigment of the dormant Mycobacterium smegmatis is porphyrin, FEMS Microbiol. Lett., 363, fnw206, https://doi.org/10.1093/femsle/fnw206.

    Article  CAS  PubMed  Google Scholar 

  113. Fuhrhop, J. (1974) The reactivity of the porphyrin ligand, Angewandte Chemie Int. Ed., 13, 321-335, https://doi.org/10.1002/anie.197403211.

    Article  Google Scholar 

  114. Antonova, N. A., Osipova, V. P., Kolyada, M. N., Movchan, N. O., Milaeva, E. R., and Pimenov, Yu. T. (2010) Study of the antioxidant properties of porphyrins and their complexes with metals, Macroheterocycles, 3, 139-144, https://doi.org/10.6060/mhc2010.2-3.139.

    Article  CAS  Google Scholar 

  115. Castello, P., Drechsel, D. A., Day, B. J., and Patel, M. (2008) Inhibition of mitochondrial hydrogen peroxide production by lipophilic metalloporphyrins, J. Pharmacol. Exp. Ther., 324, 970-976, https://doi.org/10.1124/jpet.107.132134.

    Article  CAS  PubMed  Google Scholar 

  116. Patel, M., and Day, B. J. (1999) Metalloporphyrin class of therapeutic catalytic antioxidants, Trends Pharmacol. Sci., 20, 359-364, https://doi.org/10.1016/S0165-6147(99)01336-X.

    Article  CAS  PubMed  Google Scholar 

  117. Albrethsen, J., Agner, J., Piersma, S. R., Højrup, P., Pham, T., Weldingh, K., Jimenez, C. R., Andersen, P., and Rosenkrands, I. (2013) Proteomic Profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems, Mol. Cell. Proteomics, 12, 1180-1191, https://doi.org/10.1074/mcp.M112.018846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ang, K., Ibrahim, P., and Gam, L. (2014) Analysis of differentially expressed proteins in late-stationary growth phase of Mycobacterium tuberculosis H37Rv, Biotechnol. Appl. Biochem., 61, 153-164, https://doi.org/10.1002/bab.1137.

    Article  CAS  PubMed  Google Scholar 

  119. Kim, S. Y., Lee, B., Shin, S. J., Kim, H., and Park, J. (2008) Differentially expressed genes in Mycobacterium tuberculosis H37Rv under mild acidic and hypoxic conditions, J. Med. Microbiol., 57, 1473-1480, https://doi.org/10.1099/jmm.0.2008/001545-0.

    Article  CAS  PubMed  Google Scholar 

  120. Schubert, O. T., Ludwig, C., Kogadeeva, M., Zimmermann, M., Rosenberger, G., Gengenbacher, M., Gillet, L. C., Collins, B. C., Röst, H. L., Kaufmann, S. H., Sauer, U., and Aebersold, R. (2015) Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis, Cell Host Microbe, 18, 96-108, https://doi.org/10.1016/j.chom.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  121. Salina, E. G., Mollenkopf, H. J., Kaufmann, S. H. E., and Kaprelyants, A. S. (2009) M. tuberculosis gene expression during transition to the “non-culturable” state, Acta Naturae, 1, 73-77, https://doi.org/10.32607/20758251-2009-1-2-73-77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zimmermann, M., Kuehne, A., Boshoff, H. I., Barry, C. E., Zamboni, N., and Sauer, U. (2015) Dynamic exometabolome analysis reveals active metabolic pathways in non-replicating mycobacteria, Environ. Microbiol., 17, 4802-4815, https://doi.org/10.1111/1462-2920.13056.

    Article  CAS  PubMed  Google Scholar 

  123. Rosenkrands, I., Slayden, R. A., Crawford, J., Aagaard, C., Barry, C. E. 3rd, and Andersen, P. (2002) Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins, J. Bacteriol., 184, 3485-3491, https://doi.org/10.1128/JB.184.13.3485-3491.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Starck, J., Källenius, G., Marklund, B. I., Andersson, D. I., and Åkerlund, T. (2004) Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions, Microbiology, 150, 3821-3829, https://doi.org/10.1099/mic.0.27284-0.

    Article  CAS  PubMed  Google Scholar 

  125. Dayaram, Y. K., Talaue, M. T., Connell, N. D., and Venketaraman, V. (2006) Characterization of a glutathione metabolic mutant of Mycobacterium tuberculosis and its resistance to glutathione and nitrosoglutathione, J. Bacteriol., 188, 1364-1372, https://doi.org/10.1128/JB.188.4.1364-1372.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fiehn, O. (2002) Metabolomics – the link between genotypes and phenotypes, Plant Mol. Biol., 48, 155-171, https://doi.org/10.1007/978-94-010-0448-0_11.

    Article  CAS  PubMed  Google Scholar 

  127. Pethe, K., Sequeira, P. C., Agarwalla, S., Rhee, K., Kuhen, K., Phong, W. Y., Patel, V., Beer, D., Walker, J. R., Duraiswamy, J., Jiricek, J., Keller, T. H., Chatterjee, A., Tan, M. P., Ujjini, M., Rao, S. P., Camacho, L., Bifani, P., Mak, P. A., Ma, I., Barnes, S. W., Chen, Z., Plouffe, D., Thayalan, P., Ng, S. H., Au, M., Lee, B. H., Tan, B. H., Ravindran, S., Nanjundappa, M., Lin, X., Goh, A., Lakshminarayana, S. B., Shoen, C., Cynamon, M., Kreiswirth, B., Dartois, V., Peters, E. C., Glynne, R., Brenner, S., and Dick, T. (2010) A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy, Nat. Commun., 1, 57, https://doi.org/10.1038/ncomms1060.

    Article  PubMed  Google Scholar 

  128. Lo, T. W. C., Westwood, M. E., McLellan, A. C., Selwood, T., and Thornalley, P. J. (1994) Binding and modification of proteins by methylglyoxal under physiological conditions, J. Biol. Chem., 269, 32299-32305, https://doi.org/10.1016/S0021-9258(18)31635-1.

    Article  CAS  PubMed  Google Scholar 

  129. Billig, S., Schneefeld, M., Huber, C., Grassl, G. A., Eisenreich, W., and Bange, F. C. (2017) Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages, Sci. Rep., 7, 6484, https://doi.org/10.1038/s41598-017-05916-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wood, J. M. (2006) Osmosensing by bacteria, Sci. STKE, 357, pe43, https://doi.org/10.1126/stke.3572006pe43.

    Article  Google Scholar 

  131. Wood, J. M. (2007) Bacterial osmosensing transporters, Methods Enzymol., 428, 77-107, https://doi.org/10.1016/S0076-6879(07)28005-X.

    Article  CAS  PubMed  Google Scholar 

  132. Kempf, B., and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments, Arch. Microbiol., 170, 319-330, https://doi.org/10.1007/s002030050649.

    Article  CAS  PubMed  Google Scholar 

  133. Horlacher, R., Uhland, K., Klein, W., Ehrmann, M., and Boos, W. (1996) Characterization of a cytoplasmic trehalase of Escherichia coli, J. Bacteriol., 178, 6250-6257, https://doi.org/10.1128/jb.178.21.6250-6257.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shleeva, M. O., Savitsky, A. P., Nikitushkin, V. D., Soloviev, I. D., Trutneva, K. A., Keruchenko, Ya. S., and Kaprelyants, A. S. (2020) Effect of photodynamic inactivation against dormant forms and active growing cells of Mycobacterium smegmatis, Appl. Biochem. Microbiol., 56, 242-249, https://doi.org/10.1134/S000368382003014X.

    Article  Google Scholar 

  135. Argüelles, J. C. (2000) Physiological roles of trehalose in bacteria and yeasts: A comparative analysis, Arch. Microbiol., 174, 217-224, https://doi.org/10.1007/s002030000192.

    Article  PubMed  Google Scholar 

  136. Elbein, A. D., Pan, Y. T., Pastuszak, I., and Carroll, D. (2003) New insights on trehalose: A multifunctional molecule, Glycobiology, 13, 17R-27R, https://doi.org/10.1093/glycob/cwg047.

    Article  CAS  PubMed  Google Scholar 

  137. Shleeva, M. O., Savitsky, A. P., Nikitushkin, V. D., Solovyev, I. D., Kazachkina, N. I., Perevarov, V. V., and Kaprelyants, A. S. (2019) Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins, Appl. Microbiol. Biotechnol., 103, 9687-9695, https://doi.org/10.1007/s00253-019-10197-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-15-00324, “Biochemical characteristics of dormant mycobacterial cells” and “Conclusions” sections) and by the State Assignment for the Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences (sections “Introduction”, “Dormant forms of nonsporulating bacteria”, “Dormancy, persistence, and latency of tuberculosis pathogen Mycobacterium tuberculosis: similarities and differences”, and “Modeling of the hypometabolic state of mycobacteria by gradual medium acidification”).

Author information

Authors and Affiliations

Authors

Contributions

MS – conceptualization, funding acquisition, writing (review & editing); AS – writing (review & editing).

Corresponding author

Correspondence to Margarita O. Shleeva.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2023, Vol. 63, pp. 103-148.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shleeva, M.O., Kaprelyants, A.S. Hypobiosis of Mycobacteria: Biochemical Aspects. Biochemistry Moscow 88 (Suppl 1), S52–S74 (2023). https://doi.org/10.1134/S0006297923140043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923140043

Keywords

Navigation