Skip to main content
Log in

Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer’s Disease Signs Development

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited. It is not clear whether imbalance of the excitatory/inhibitory systems is the cause or the consequence of the disease development. Here we analyzed the age-related alterations of the levels of glutamate, GABA, as well as enzymes that synthesize them (glutaminase, glutamine synthetase, GABA-T, and GAD67), transporters (GLAST, GLT-1, and GAT1), and relevant receptors (GluA1, NMDAR1, NMDA2B, and GABAAr1) in the whole hippocampus of the Wistar rats and of the senescence-accelerated OXYS rats, a model of the most common (> 95%) sporadic AD. Our results suggest that there is a decline in glutamate and GABA signaling with age in hippocampus of the both rat strains. However, we have not identified significant changes or compensatory enhancements in this system in the hippocampus of OXYS rats during the development of neurodegenerative processes that are characteristic of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

GABA:

gamma aminobutyric acid

GABAAR1:

GABA-A receptor subunit 1

GABA-T:

GABA transaminase

GAD:

glutamic acid decarboxylase (glutamate decarboxylase)

GAD67:

glutamic acid decarboxylase isoform

GAT1:

type 1 GABA transporter

GLAST:

glial glutamate and aspartate transporter

GLT-1:

glial glutamate transporter 1

GluA1:

AMPA receptor subunit 1

NMDAR1:

NMDA receptor subunit 1

NMDAR2B:

NMDA receptor subunit 2B

References

  1. Wang, R., and Reddy, P. H. (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease, J. Alzheimers Dis., 57, 1041-1048, https://doi.org/10.3233/JAD-160763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selkoe, D. J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years, EMBO Mol. Med., 8, 595-608, https://doi.org/10.15252/emmm.201606210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wyss-Coray, T. (2016) Ageing, neurodegeneration and brain rejuvenation, Nature, 539, 180-186, https://doi.org/10.1038/nature20411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polanco, J. C., Li, C., Bodea, L. G., Martinez-Marmol, R., Meunier, F. A., and Götz, J. (2017) Amyloid-β and tau complexity – towards improved biomarkers and targeted therapies, Nat. Rev. Neurol., 14, 22-39, https://doi.org/10.1038/nrneurol.2017.162.

    Article  CAS  PubMed  Google Scholar 

  5. Cox, M. F., Hascup, E. R., Bartke, A., and Hascup, K. N. (2022) Friend or foe? Defining the role of glutamate in aging and Alzheimer’s disease, Front. Aging, 3, 929474, https://doi.org/10.3389/fragi.2022.929474.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hampe, C. S., Mitoma, H., and Manto, M. (2018) GABA and glutamate: their transmitter role in the CNS and pancreatic islets, in GABA and Glutamate – New Developments in Neurotransmission Research, IntechOpen, Book Chapter 5, pp. 65-90, https://doi.org/10.5772/intechopen.70958.

  7. Sears, S. M. S., and Hewett, S. J. (2021) Influence of glutamate and GABA transport on brain excitatory/inhibitory balance, Exp. Biol. Med. (Maywood), 246, 1069-1083, https://doi.org/10.1177/1535370221989263.

    Article  CAS  PubMed  Google Scholar 

  8. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Z., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: a genetic model of premature aging and age-related diseases, Adv. Gerontol., 27, 336-340, https://doi.org/10.1134/S2079057014040146.

    Article  CAS  PubMed  Google Scholar 

  9. Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K. Y., and Kolosova, N. G. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396-1413, https://doi.org/10.18632/ONCOTARGET.2751.

    Article  PubMed  Google Scholar 

  10. Kolosova, N. G., Kozhevnikova, O. S., Muraleva, N. A., Rudnitskaya, E. A., Rumyantseva, Y. V., Stefanova, N. A., Telegina, D. V., Tyumentsev, M. A., Fursova, A. Z. (2022) SkQ1 as a tool for controlling accelerated senescence program: experiments with OXYS rats, Biochemistry (Moscow), 87, 1552-1562, https://doi.org/10.1134/S0006297922120124.

    Article  CAS  PubMed  Google Scholar 

  11. Stefanova, N. A., Maksimova, K. Y., Kiseleva, E., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2015) Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology, J. Pineal. Res., 59, 163-177, https://doi.org/10.1111/JPI.12248.

    Article  CAS  PubMed  Google Scholar 

  12. Telegina, D. V., Antonenko, A. K., Fursova, A. Z., and Kolosova, N. G. (2022) The glutamate/GABA System in the retina of male rats: effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1, Biogerontology, 23, 571-585, https://doi.org/10.1007/s10522-022-09983-w.

    Article  CAS  PubMed  Google Scholar 

  13. Stefanova, N. A., and Kolosova, N. G. (2023) The rat brain transcriptome: from infancy to aging and sporadic Alzheimer’s disease-like pathology, Int. J. Mol. Sci., 24, 1462, https://doi.org/10.3390/ijms24021462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stefanova, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Muraleva, N. A., and Kolosova, N. G. (2018) Association of cerebrovascular dysfunction with the development of Alzheimer’s disease-like pathology in OXYS rats, BMC Genomics, 19, 51-63, https://doi.org/10.1186/S12864-018-4480-9.

    Article  Google Scholar 

  15. Magi, S., Piccirillo, S., Amoroso, S., and Lariccia, V. (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond, Int. J. Mol. Sci., 20, 5674, https://doi.org/10.3390/ijms20225674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pajarillo, E., Rizor, A., Lee, J., Aschner, M., Lee, E. (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics, Neuropharmacology, 161, 1-37, https://doi.org/10.1016/j.neuropharm.2019.03.002.

    Article  CAS  Google Scholar 

  17. Snytnikova, O., Telegina, D., Savina, E., Tsentalovich, Y., and Kolosova, N. (2023) Quantitative metabolomic analysis of the rat hippocampus: effects of age and of the development of Alzheimer’s disease-like pathology, J. Alzheimer's Disease, https://doi.org/10.3233/JAD-230706, in press.

    Article  Google Scholar 

  18. Schubert, F., Gallinat, J., Seifert, F., and Rinneberg, H. (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla, NeuroImage, 21, 1762-1771, https://doi.org/10.1016/j.neuroimage.2003.11.014.

    Article  PubMed  Google Scholar 

  19. Kaiser, L. G., Schuff, N., Cashdollar, N., and Weiner, M. W. (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T, Neurobiol. Aging, 26, 665-672, https://doi.org/10.1016/j.neurobiolaging.2004.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, L., Jiang, C. S., and Ernst, T. (2009) Effects of age and sex on brain glutamate and other metabolites, Magn. Reson. Imaging, 27, 142-145, https://doi.org/10.1016/j.mri.2008.06.002.21.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, D., Liu, D., Yin, J., Qian, T., Shrestha, S., and Ni, H. (2017) Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment, Eur. Radiol., 27, 2698-2705, https://doi.org/10.1007/S00330-016-4669-8.

    Article  PubMed  Google Scholar 

  22. Rozycka, A., Charzynska, A., Misiewicz, Z., Maciej Stepniewski, T., Sobolewska, A., Kossut, M., and Liguz-Lecznar, M. (2019) Glutamate, GABA, and presynaptic markers involved in neurotransmission are differently affected by age in distinct mouse brain regions, ACS Chem. Neurosci., 10, 4449-4461, https://doi.org/10.1021/acschemneuro.9b00220.

    Article  CAS  PubMed  Google Scholar 

  23. Segovia, G., Porras, A., Del Arco, A., and Mora, F. (2001) Glutamatergic neurotransmission in aging: a critical perspective, Mech. Ageing Dev., 122, 1-29, https://doi.org/10.1016/S0047-6374(00)00225-6.

    Article  CAS  PubMed  Google Scholar 

  24. Dong, Y., and Brewer, G. J. (2019) Global metabolic shifts in age and Alzheimer’s disease mouse brains pivot at NAD+/NADH redox sites, J. Alzheimers Dis., 71, 119-140, https://doi.org/10.3233/JAD-190408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mira, R. G., and Cerpa, W. (2020) Building a bridge between NMDAR-mediated\excitotoxicity and mitochondrial dysfunction in chronic and acute diseases, Cell. Mol. Neurobiol., 41, 1413-1430, https://doi.org/10.1007/S10571-020-00924-0.

    Article  PubMed  Google Scholar 

  26. Rodríguez-Giraldo, M., González-Reyes, R. E., Ramírez-Guerrero, S., Bonilla-Trilleras, C. E., Guardo-Maya, S., and Nava-Mesa, M. O. (2022) Astrocytes as a therapeutic target in Alzheimer’s disease-comprehensive review and recent developments, Int. J. Mol. Sci., 23, 13630, https://doi.org/10.3390/ijms232113630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeung, J. H. Y., Palpagama, T. H., Wood, O. W. G., Turner, C., Waldvogel, H. J., Faull, R. L. M., and Kwakowsky, A. (2021) EAAT2 expression in the hippocampus, subiculum, entorhinal cortex and superior temporal gyrus in Alzheimer’s disease, Front. Cell. Neurosci., 15, 702824, https://doi.org/10.3389/fncel.2021.702824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Babaei, P. (2021) NMDA and AMPA receptors dysregulation in Alzheimer’s disease, Eur. J. Pharmacol., 908, 174310, https://doi.org/10.1016/j.ejphar.2021.174310.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, A. (2015) NMDA receptor function during senescence: implication on cognitive performance, Front. Neurosci., 9, 473, https://doi.org/10.3389/fnins.2015.00473.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar, A., and Foster, T. C. (2018) Alteration in NMDA receptor mediated glutamatergic neurotransmission in the hippocampus during senescence, Neurochem. Res., 44, 38-48, https://doi.org/10.1007/S11064-018-2634-4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Avila, J., Llorens-Martín, M., Pallas-Bazarra, N., Bolos, M., Perea, J. R., Rodríguez-Matellan, A., and Hernandez, F. (2017) Cognitive decline in neuronal aging and Alzheimer’s disease: role of NMDA receptors and associated proteins, Front. Neurosci., 11, 626, https://doi.org/10.3389/fnins.2017.00626.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cercato, M. C., Vázquez, C. A., Kornisiuk, E., Aguirre, A. I., Colettis, N., Snitcofsky, M., Jerusalinsky, D. A., and Baez, M. V. (2017) GluN1 and GluN2A NMDA receptor subunits increase in the hippocampus during memory consolidation in the rat, Front. Behav. Neurosci., 10, 242, https://doi.org/10.3389/fnbeh.2016.00242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge, Y., and Wang, Y. T. (2023) GluN2B-containing NMDARs in the mammalian brain: pharmacology, physiology, and pathology, Front. Mol. Neurosci., 16, 1190324, https://doi.org/10.3389/fnmol.2023.1190324.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yeung, J. H. Y., Walby, J. L., Palpagama, T. H., Turner, C., Waldvogel, H. J., Faull, R. L. M., and Kwakowsky, A. (2021) Glutamatergic receptor expression changes in the Alzheimer’s disease hippocampus and entorhinal cortex, Brain Pathol., 31, e13005, https://doi.org/10.1111/BPA.13005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qu, W., Yuan, B., Liu, J., Liu, Q., Zhang, X., Cui, R., Yang, W., and Li, B. (2021) Emerging role of AMPA receptor subunit GluA1 in synaptic plasticity: implications for Alzheimer’s disease, Cell Prolif., 54, e12959, https://doi.org/10.1111/cpr.12959.

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y., Sun, H., Chen, Z., Xu, H., Bu, G., and Zheng, H. (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease, Front. Aging Neurosci., 8, 31, https://doi.org/10.3389/fnagi.2016.00031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bi, D., Wen, L., Wu, Z., and Shen, Y. (2020) GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease, Alzheimers Dement., 16, 1312-1329, https://doi.org/10.1002/alz.12088.

    Article  PubMed  Google Scholar 

  38. Lee, S. E., Lee, Y., and Lee, G. H. (2019) The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain, Arch. Pharm. Res., 42, 1031-1039, https://doi.org/10.1007/s12272-019-01196-z.

    Article  CAS  PubMed  Google Scholar 

  39. Chattopadhyaya, B., Di Cristo, G., Wu, C. Z., Knott, G., Kuhlman, S., Fu, Y., Palmiter, R. D., and Huang, Z. J. (2007) GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex, Neuron, 54, 889-903, https://doi.org/10.1016/j.neuron.2007.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lau, C. G., and Murthy, V. N. (2012) Activity-dependent regulation of inhibition via GAD67, J. Neurosci., 32, 8521-8531, https://doi.org/10.1523/JNEUROSCI.1245-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sandhu, K. V., Lang, D., Müller, B., Nullmeier, S., Yanagawa, Y., Schwegler, H., and Stork, O. (2014) Glutamic acid decarboxylase 67 haplodeficiency impairs social behavior in mice, Genes Brain Behav., 13, 439-450, https://doi.org/10.1111/GBB.12131.

    Article  CAS  PubMed  Google Scholar 

  42. Kash, S. F., Johnson, R. S., Tecott, L. H., Noebels, J. L., Mayfield, R. D., Hanahan, D., and Baekkeskov, S. (1997) Epilepsy in mice deficient in the 65-KDa isoform of glutamic acid decarboxylase, Proc. Natl. Acad. Sci. USA, 94, 14060-14065, https://doi.org/10.1073/PNAS.94.25.14060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toritsuka, M., Yoshino, H., Makinodan, M., Ikawa, D., Kimoto, S., Yamamuro, K., Okamura, K., Akamatsu, W., Okada, Y., Matsumoto, T., Hashimoto, K., Ogawa, Y., Saito, Y., Watanabe, K., Aoki, C., Takada, R., Fukami, S. I., Hamano-Iwasa, K., Okano, H., and Kishimoto, T. (2021) Developmental dysregulation of excitatory-to-inhibitory GABA-polarity switch may underlie schizophrenia pathology: a monozygotic-twin discordant case analysis in human IPS cell-derived neurons, Neurochem. Int., 150, e105179, https://doi.org/10.1016/J.NEUINT.2021.105179.

    Article  Google Scholar 

  44. Benes, F. M., Lim, B., Matzilevich, D., Walsh, J. P., Subburaju, S., and Minns, M. (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars, Proc. Natl. Acad. Sci. USA, 104, 10164-10169, https://doi.org/10.1073/pnas.0703806104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lanoue, A. C., Dumitriu, A., Myers, R. H., Soghomonian, J. J. (2010) Decreased glutamic acid decarboxylase MRNA expression in prefrontal cortex in Parkinson’s disease, Exp. Neurol., 226, 207-217, https://doi.org/10.1016/j.expneurol.2010.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y., Wu, Z., Bai, Y. T., Wu, G. Y., and Chen, G. (2017) Gad67 haploinsufficiency reduces amyloid pathology and rescues olfactory memory deficits in a mouse model of Alzheimer’s disease, Mol. Neurodegener., 12, 73, https://doi.org/10.1186/s13024-017-0213-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ethiraj, J., Palpagama, T. H., Turner, C., van der Werf, B., Waldvogel, H. J., Faull, R. L. M., and Kwakowsky, A. (2021) The effect of age and sex on the expression of GABA signaling components in the human hippocampus and entorhinal cortex, Sci. Rep., 11, 21470, https://doi.org/10.1038/s41598-021-00792-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krantic, S., Isorce, N., Mechawar, N., Davoli, M. A., Vignault, E., Albuquerque, M., Chabot, J. G., Moyse, E., Chauvin, J. P., Aubert, I., McLaurin, J., and Quirion, R. (2012) Hippocampal GABAergic neurons are susceptible to amyloid-β Toxicity in vitro and are decreased in number in the Alzheimer’s disease TgCRND8 mouse model, J. Alzheimers Dis., 29, 293-308, https://doi.org/10.3233/JAD-2011-110830.

    Article  CAS  PubMed  Google Scholar 

  49. Ulrich, D. (2015) Amyloid-β impairs synaptic inhibition via GABAA receptor endocytosis, J. Neurosci., 35, 9205-9210, https://doi.org/10.1523/JNEUROSCI.0950-15.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palpagama, T. H., Sagniez, M., Kim, S., Waldvogel, H. J., Faull, R. L., and Kwakowsky, A. (2019) GABAA receptors are well preserved in the hippocampus of aged mice, eNeuro, 6, 1-13, https://doi.org/10.1523/ENEURO.0496-18.2019.

    Article  CAS  Google Scholar 

  51. Rissman, R. A., and Mobley, W. C. (2011) Implications for treatment: GABAA receptors in aging, down syndrome and Alzheimer’s disease, J. Neurochem., 117, 613-622, https://doi.org/10.1111/J.1471-4159.2011.07237.X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., Rudnitskaya, E. A., Korbolina, E. E., Muraleva, N. A., and Kolosova, N. G. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease, Cell Cycle, 13, 898-909, https://doi.org/10.4161/CC.28255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neff, R. A., Wang, M., Vatansever, S., Guo, L., Ming, C., Wang, Q., Wang, E., Horgusluoglu-Moloch, E., Song, W. M., Li, A., Castranio, E. L., Tcw, J., Ho, L., Goate, A., Fossati, V., Noggle, S., Gandy, S., Ehrlich, M. E., Katsel, P., Schadt, E., Cai, D., Brennand, K. J., Haroutunian, V., and Zhang, B. (2021) Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets, Sci. Adv., 7, eabb5398, https://doi.org/10.1126/sciadv.abb5398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 19-15-00044).

Author information

Authors and Affiliations

Authors

Contributions

A.O.B. and N.A.S. experimental work; A.O.B., N.A.S., D.V.T., and N.G.K. discussion of research results; A.O.B. and D.V.T. writing the manuscript; N.G.K., N.A.S., and D.V.T. editing the manuscript.

Corresponding author

Correspondence to Nataliya G. Kolosova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All studies were carried out with OXYS and Wistar (control) male rats on the basis of the Center for Collective Use “Gene Pools of Laboratory Animals”, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, in accordance with the ethical standards of European Union Directive 2010/63/EU of September 22, 2010. All experiments were approved and performed in accordance with the guidelines of the Ethics Committee on Animal Trials at the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia (Resolution no. 12000-496 of April 2, 1980; Presidium of the Russian Academy of Sciences).

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnyasheva, A.O., Stefanova, N.A., Kolosova, N.G. et al. Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer’s Disease Signs Development. Biochemistry Moscow 88, 1972–1986 (2023). https://doi.org/10.1134/S0006297923120027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923120027

Keywords

Navigation