Skip to main content
Log in

Regulation of Human DNA Primase-Polymerase PrimPol

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Iyer, L. M., Koonin, E. V., Leipe, D. D., and Aravind, L. (2005) Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members, Nucleic Acids Res., 33, 3875-3896, https://doi.org/10.1093/nar/gki702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. García-Gómez, S., Reyes, A., Martínez-Jiménez, M. I., Chocrón, S., Mourón, S., Terrados, G., Powell, C., Salido, E., Méndez, J., Holt, I. J., and Blanco, L. (2013) PrimPol, an archaic primase/polymerase operating in human cells, Mol. Cell, 52, 541-553, https://doi.org/10.1016/j.molcel.2013.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wan, L., Lou, J., Xia, Y., Su, B., Liu, T., Cui, J., Sun, Y., Lou, H., and Huang, J. (2013) HPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity, EMBO Rep., 14, 1104-1112, https://doi.org/10.1038/embor.2013.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bianchi, J., Rudd, S. G., Jozwiakowski, S. K., Bailey, L. J., Soura, V., Taylor, E., Stevanovic, I., Green, A. J., Stracker, T. H., Lindsay, H. D., and Doherty, A. J. (2013) Primpol bypasses UV photoproducts during eukaryotic chromosomal DNA replication, Mol. Cell, 52, 566-573, https://doi.org/10.1016/j.molcel.2013.10.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kobayashi, K., Guilliam, T. A., Tsuda, M., Yamamoto, J., Bailey, L. J., Iwai, S., Takeda, S., Doherty, A. J., and Hirota, K. (2016) Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleoside, Cell Cycle, 15, 1997-2008, https://doi.org/10.1080/15384101.2016.1191711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bailey, L. J., Bianchi, J., Hégarat, N., Hochegger, H., and Doherty, A. J. (2016) PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage, Cell Cycle, 15, 908-918, https://doi.org/10.1080/15384101.2015.1128597.

    Article  CAS  PubMed  Google Scholar 

  7. Bailey, L. J., Bianchi, J., and Doherty, A. J. (2019) PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells, Nucleic Acids Res., 47, 4026-4038, https://doi.org/10.1093/nar/gkz056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Makarova, A. V., Boldinova, E. O., Belousova, E. A., and Lavrik, O. I. (2018) In vitro lesion bypass by human PrimPol, DNA Repair (Amst.), 70, 18-24, https://doi.org/10.1016/j.dnarep.2018.07.009.

    Article  CAS  PubMed  Google Scholar 

  9. Keen, B. A., Jozwiakowski, S. K., Bailey, L. J., Bianchi, J., and Doherty, A. J. (2014) Molecular dissection of the domain architecture and catalytic activities of human PrimPol, Nucleic Acids Res., 42, 5830-5845, https://doi.org/10.1093/nar/gku214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stojkovic, G., Makarova, A. V., Wanrooij, P. H., Forslund, J., Burgers, P. M. J., and Wanrooij, S. (2016) Oxidative DNA damage stalls the human mitochondrial replisome, Sci. Rep., 6, 28942, https://doi.org/10.1038/srep28942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zafar, M. K., Ketkar, A., Lodeiro, M. F., Cameron, C. E., and Eoff, R. L. (2014) Kinetic analysis of human PrimPol DNA polymerase activity reveals a generally error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-oxo-2′-deoxyguanosine, Biochemistry, 53, 6584-6594, https://doi.org/10.1021/bi501024u.

    Article  CAS  PubMed  Google Scholar 

  12. Martínez-Jiménez, M. I., García-Gómez, S., Bebenek, K., Sastre-Moreno, G., Calvo, P. A., Díaz-Talavera, A., Kunkel, T. A., and Blanco, L. (2015) Alternative solutions and new scenarios for translesion DNA synthesis by human PrimPol, DNA Repair (Amst.), 29, 127-138, https://doi.org/10.1016/j.dnarep.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  13. Boldinova, E. O., Yudkina, A. V., Shilkin, E. S., Gagarinskaya, D. I., Baranovskiy, A. G., Tahirov, T. H., Zharkov, D. O., and Makarova, A. V. (2021) Translesion activity of PrimPol on DNA with cisplatin and DNA-protein cross-links, Sci. Rep., 11, 17588, https://doi.org/10.1038/s41598-021-96692-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boldinova, E. O., Ghodke, P. P., Sudhakar, S., Mishra, V. K., Manukyan, A. A., Miropolskaya, N., Pradeepkumar, P. I., and Makarova, A. V. (2022) Translesion synthesis across the N2-Ethyl-deoxyguanosine adduct by human PrimPol, ACS Chem. Biol., 17, 3238-3250, https://doi.org/10.1021/acschembio.2c00717.

    Article  CAS  PubMed  Google Scholar 

  15. Guilliam, T. A., Brissett, N. C., Ehlinger, A., Keen, B. A., Kolesar, P., Taylor, E., Bailey, L. J., Lindsay, H. D., Chazin, W. J., and Doherty, A. J. (2017) Molecular basis for PrimPol recruitment to replication forks by RPA, Nat. Commun., 8, 15222, https://doi.org/10.1038/ncomms15222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quinet, A., Tirman, S., Jackson, J., Šviković, S., Lemaçon, D., Carvajal-Maldonado, D., González-Acosta, D., Vessoni, A. T., Cybulla, E., Wood, M., Tavis, S., Batista, l. F. Z., Méndez, J., Sale, J. S., and Vindigni, A. (2019) PRIMPOL-mediated adaptive response suppresses replication fork Reversal in BRCA-deficient cells, Mol. Cell, 77, 461-474.e9, https://doi.org/10.1016/j.molcel.2019.10.008.

    Article  CAS  PubMed  Google Scholar 

  17. Piberger, A. L., Bowry, A., Kelly, R., Walker, A. K., Gonzalez, D., Bailey, L. J., Doherty, A. J., Méndez, J., Morris, J. R., Bryant, H. E., and Petermann, E. (2020) PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts, Nat. Commun., 11, 5863, https://doi.org/10.1038/s41467-020-19570-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. González‐Acosta, D., Blanco‐Romero, E., Ubieto‐Capella, P., Mutreja, K., Míguez, S., Llanos, S., García, F., Muñoz, J., Blanco, L., Lopes, M., and Méndez, J. (2021) PrimPol‐mediated repriming facilitates replication traverse of DNA interstrand crosslinks, EMBO J., 40, e106355, https://doi.org/10.15252/embj.2020106355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schiavone, D., Jozwiakowski, S. K., Romanello, M., Guilbaud, G., Guilliam, T. A., Bailey, L. J., Sale, J. E., and Doherty, A. J. (2016) PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells, Mol. Cell, 61, 161-169, https://doi.org/10.1016/j.molcel.2015.10.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, F., Wu, J., Xue, A., Su, Y., Wang, X., Lu, X., Zhou, Z., Qu, J., and Zhou, X. (2013) Exome sequencing reveals CCDC111 mutation associated with high myopia, Hum. Genet., 132, 913-921, https://doi.org/10.1007/s00439-013-1303-6.

    Article  CAS  PubMed  Google Scholar 

  21. Keen, B. A., Bailey, L. J., Jozwiakowski, S. K., and Doherty, A. J. (2014) Human PrimPol mutation associated with high myopia has a DNA replication defect, Nucleic Acids Res., 42, 12102-12111, https://doi.org/10.1093/nar/gku879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kasamo, K., Nakamura, M., Daimou, Y., and Sano, A. (2020) A PRIMPOL mutation and variants in multiple genes may contribute to phenotypes in a familial case with chronic progressive external ophthalmoplegia symptoms, Neurosci. Res., 157, 58-63, https://doi.org/10.1016/j.neures.2019.07.006.

    Article  CAS  PubMed  Google Scholar 

  23. Duong, V. N., Zhou, L., Martínez-Jiménez, M. I., He, L., Cosme, M., Blanco, L., Paintsil, E., Anderson, K. S. (2020) Identifying the role of PrimPol in TDF-induced toxicity and implications of its loss of function mutation in an HIV+ patient, Sci. Rep., 10, 9343, https://doi.org/10.1038/s41598-020-66153-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Díaz-Talavera, A., Calvo, P. A., González-Acosta, D., Díaz, M., Sastre-Moreno, G., Blanco-Franco, L., Guerra, S., Martínez-Jiménez, M. I., Méndez, J., and Blanco, L. (2019) A cancer-associated point mutation disables the steric gate of human PrimPol, Sci. Rep., 9, 1121, https://doi.org/10.1038/s41598-018-37439-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Picher, Á. J., Budeus, B., Wafzig, O., Krüger, C., García-Gómez, S., Martínez-Jiménez, M. I., Díaz-Talavera, A., Weber, D., Blanco, L., and Schneider, A. (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol, Nat. Commun., 7, 13296, https://doi.org/10.1038/ncomms13296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Agudo, R., Calvo, P. A., Martínez-Jiménez, M. I., and Blanco, L. (2017) Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase, Nucleic Acids Res., 45, 9046-9058, https://doi.org/10.1093/nar/gkx633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boldinova, E. O., Wanrooij, P. H., Shilkin, E. S., Wanrooij, S., and Makarova, A. V. (2017) DNA damage tolerance by eukaryotic DNA polymerase and primase PrimpPol, Int. J. Mol. Sci., 18, 1584, https://doi.org/10.3390/ijms18071584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tirman, S., Cybulla, E., Quinet, A., Meroni, A., and Vindigni, A. (2020) PRIMPOL ready, set, reprime! Crit. Rev. Biochem. Mol. Biol., 56, 17-30, https://doi.org/10.1080/10409238.2020.1841089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baretic, D., Jenkyn-bedford, M., Aria, V., Cannone, G., Skehel, M., and Yeeles, J. T. P. (2020) Cryo-EM structure of the fork protection complex bound to CMG at a replication fork, Mol. Cell, 78, 926-940.e13, https://doi.org/10.1016/j.molcel.2020.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones, M. L., Baris, Y., Taylor, M. R. G., and Yeeles, J. T. P. (2021) Structure of a human replisome shows the organisation and interactions of a DNA replication machine, EMBO J., 40, e108819, https://doi.org/10.15252/embj.2021108819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan, Z., Georgescu, R., Luna, R. De, Santos, A., Zhang, D., Bai, L., Yao, N. Y., Zhao, G., O’Donnell, M. E., and Li, H. (2019) Ctf4 organizes sister replisomes and Pol a into a replication factory, eLife, 8, e47405, https://doi.org/10.7554/eLife.47405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rzechorzek, N. J., Hardwick, S. W., Jatikusumo, V. A., Chirgadze, D. Y., and Pellegrini, L. (2020) CryoEM structures of human CMG – ATP-S – DNA and CMG – AND-1 complexes, Nucleic Acids Res., 48, 6980-6995, https://doi.org/10.1093/nar/gkaa429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kapadia, N., El-Hajj, Z. W., Zheng, H., Beattie, T. R., Yu, A., and Reyes-Lamothe, R. (2020) Processive activity of replicative DNA polymerases in the replisome of live eukaryotic cells, Mol. Cell, 80, 114-126.e8, https://doi.org/10.1016/j.molcel.2020.08.014.

    Article  CAS  PubMed  Google Scholar 

  34. Lewis, J. S., Spenkelink, L. M., Schauer, G. D., Yurieva, O., Mueller, S. H., Natarajan, V., Kaur, G., Maher, C., Kay, C., O’Donnell, M. E., and van Oijen, A. M. (2020) Tunability of DNA polymerase stability during eukaryotic DNA replication, Mol. Cell, 77, 17-25.e5, https://doi.org/10.1016/j.molcel.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  35. Donnell, M. O., and Li, H. (2016) The eukaryotic replisome goes under the microscope, Curr. Biol., 26, R247-R256, https://doi.org/10.1016/j.cub.2016.02.034.

    Article  CAS  Google Scholar 

  36. Bleichert, F., Botchan, M. R., and Berger, J. M. (2017) Mechanisms for initiating cellular DNA replication, Science, 355, eaah6317, https://doi.org/10.1126/science.aah6317.

    Article  CAS  PubMed  Google Scholar 

  37. Remus, D., Beuron, F., Tolun, G., Griffith, J. D., Morris, E. P., and Diffley, J. F. X. (2009) Concerted loading of Mcm2 – 7 double hexamers around DNA during DNA replication origin licensing, Cell, 139, 719-730, https://doi.org/10.1016/j.cell.2009.10.01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanaka, S., and Araki, H. (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication, Cold Spring Harb. Perspect. Biol., 5, a010371, https://doi.org/10.1101/cshperspect.a010371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perez-Arnaiz, P., Bruck, I., and Kaplan, D. L. (2016) Mcm10 coordinates the timely assembly and activation of the replication fork helicase, Nucleic Acids Res., 44, 315-329, https://doi.org/10.1093/nar/gkv1260.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, C., Paulus, B. F., and Wold, M. S. (1994) Interactions of human replication protein A with oligonucleotides, Biochemistry, 33, 14197-14206, https://doi.org/10.1021/bi00251a031.

    Article  CAS  PubMed  Google Scholar 

  41. Yates, L. A., Aramayo, R. J., Pokhrel, N., Caldwell, C. C., Kaplan, J. A., Perera, R. L., Spies, M., Antony, E., and Zhang, X. (2018) A structural and dynamic model for the assembly of replication protein A on single-stranded DNA, Nat. Commun., 9, 5447, https://doi.org/10.1038/s41467-018-07883-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pestryakov, P. E., and Lavrik, O. I. (2008) Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism, Biochemistry (Moscow), 73, 1388-1404, https://doi.org/10.1134/S0006297908130026.

    Article  CAS  PubMed  Google Scholar 

  43. Bhat, K. P., and Cortez, D. (2018) RPA and RAD51: fork reversal, fork protection, and genome stability, Nat. Struct. Mol. Biol., 25, 446-453, https://doi.org/10.1038/s41594-018-0075-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou, Y., Liu, Y., Wu, X., and Shell, S. M. (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses, J. Cell Physiol., 208, 267-273, https://doi.org/10.1002/jcp.20622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jain, R., Aggarwal, A. K., and Rechkoblit, O. (2018) Eukaryotic DNA polymerases, Curr. Opin. Struct. Biol., 53, 77-87, https://doi.org/10.1016/j.sbi.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  46. Baranovskiy, A. G., Babayeva, N. D., Zhang, Y., Gu, J., Suwa, Y., Pavlov, Y. I., and Tahirov, T. H. (2016) Mechanism of concerted RNA–DNA primer synthesis by the human primosome, J. Biol. Chem., 291, 10006-10020, https://doi.org/10.1074/jbc.M116.717405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goswami, P., Abid Ali, F., Douglas, M. E., Locke, J., Purkiss, A., Janska, A., Eickhoff, P., Early, A., Nans, A., Cheung, A. M. C., Diffley, J. F. X., and Costa, A. (2018) Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome, Nat. Commun., 9, 5061, https://doi.org/10.1038/s41467-018-07417-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guilliam, T. A., and Yeeles, J. T. (2021) The eukaryotic replisome tolerates leading‐strand base damage by replicase switching, EMBO J., 40, e107037, https://doi.org/10.15252/embj.2020107037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyabe, I., Mizuno, K., Keszthelyi, A., Daigaku, Y., Skouteri, M., Mohebi, S., Kunkel, T. A., Murray, J. M., and Carr, A. M. (2015) Polymerase d replicates both strands after homologous recombination-dependent fork restart, Nat. Struct. Mol. Biol., 22, 932-938, https://doi.org/10.1038/nsmb.3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, Z. -X., Lujan, S. A., Burkholder, A. B., Charles, J. S., Dahl, J., Farrell, C. E., Williams, J. S., and Kunkel, T. A. (2021) How asymmetric DNA replication achieves symmetrical fidelity, Nat. Struct. Mol. Biol., 28, 1020-1028, https://doi.org/10.1038/s41594-021-00691-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bulock, C. R., Xing, X., and Shcherbakova, P. V. (2020) DNA polymerase δ proofreads errors made by DNA polymerase e, Proc. Natl. Acad. Sci. USA, 117, 6035-6041, https://doi.org/10.1073/pnas.1917624117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun, H., Ma, L., Tsai, Y., Abeywardana, T., Shen, B., and Zheng, L. (2022) Okazaki fragment maturation: DNA flap dynamics for cell proliferation and survival, Trends Cell Biol., 33, 221-234, https://doi.org/10.1016/j.tcb.2022.06.014.

    Article  CAS  PubMed  Google Scholar 

  53. Stodola, J. L., and Burgers, P. M. J. (2017) Mechanism of lagging-strand DNA replication in eukaryotes, Adv. Exp. Med. Biol., 1042, 117-133, https://doi.org/10.1007/978-981-10-6955-0-6.

    Article  CAS  PubMed  Google Scholar 

  54. Sobhy, M. A., Tehseen, M., Takahashi, M., Bralić, A., De Biasio, A., and Hamdan, S. M. (2021) Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level, Comput. Struct. Biotechnol. J., 19, 4456-4471, https://doi.org/10.1016/j.csbj.2021.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, S., Lu, G., Ali, S., Liu, W., Zheng, L., Dai, H., Li, H., Xu, H., Hua, Y., Zhou, Y., Ortega, J., Li, G., Kunkel, T. A., and Shen, B. (2015) Okazaki fragment maturation involves a-segment error editing by the mammalian FEN 1/MutSa functional complex, EMBO J., 34, 1829-1843, https://doi.org/10.15252/embj.201489865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Howes, T. R. L., and Tomkinson, A. E. (2012) DNA ligase I, the replicative DNA ligase, The Eukaryotic Replisome: a Guide to Protein Structure and Function (MacNeill, S., ed.) Dordrecht, Springer, pp. 327-341, https://doi.org/10.1007/978-94-007-4572-8.

  57. Sverzhinsky, A., Tomkinson, A. E., and Pascal, J. M. (2022) Cryo-EM structures and biochemical insights into heterotrimeric PCNA regulation of DNA ligase, Structure, 30, 371-385.e5, https://doi.org/10.1016/j.str.2021.11.002.

    Article  CAS  PubMed  Google Scholar 

  58. Gonzalez-Magana, A., and Blanco, F. J. (2020) Human PCNA structure, function, and interactions, Biomolecules, 10, 570, https://doi.org/10.3390/biom10040570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stokes, K., Winczura, A., Song, B., De Piccoli, G., and Grabarczyk, D. B. (2020) Ctf18-RFC and DNA Pol epsilon form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication, Nucleic Acids Res., 48, 8128-8145, https://doi.org/10.1093/nar/gkaa541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baris, Y., Taylor, M. R. G., Aria, V., and Yeeles, J. T. P. (2022) Fast and efficient DNA replication with purified human proteins, Nature, 606, 204-210, https://doi.org/10.1038/s41586-022-04759-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chilkova, O., Stenlund, P., Isoz, I., Stith, C. M., Burgers, P. M., and Johansson, E. (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA, Nucleic Acids Res., 35, 6588-6597, https://doi.org/10.1093/nar/gkm741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lancey, C., Tehseen, M., Raducanu, V., Rashid, F., Merino, N., Ragan, T. J., Savva, C. G., Zaher, M. Z., Shirbini, A., Blanco, F. J., Hamdan, S. M., and De Biasio, A. (2020) Structure of the processive human Pol δ holoenzyme, Nat. Commun., 11, 1109, https://doi.org/10.1038/s41467-020-14898-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Craggs, T. D., Hutton, R. D., Brenlla, A., White, M. F., and Penedo, J. C. (2014) Single-molecule characterization of Fen1 and Fen1/PCNA complexes acting on flap substrates, Nucleic Acids Res., 42, 1857-1872, https://doi.org/10.1093/nar/gkt1116.

    Article  CAS  PubMed  Google Scholar 

  64. Smits, V. A. J., Cabrera, E., Freire, R., and Gillespie, D. A. (2019) Claspin – checkpoint adaptor and DNA replication factor, EMBO J., 286, 441-455, https://doi.org/10.1111/febs.14594.

    Article  CAS  Google Scholar 

  65. Hsiao, H. W., Chun, C., and Hisao, Y. (2021) Roles of Claspin in regulation of DNA replication, replication stress responses and oncogenesis in human cells, Genome Instab. Dis., 2, 263-280, https://doi.org/10.1007/s42764-021-00049-8.

    Article  CAS  Google Scholar 

  66. Bertoli, C., Skotheim, J. M., De Bruin, R. A. M., and Street, G. (2013) Control of cell cycle transcription during G1 and S phases, Nat. Rev. Mol. Cell Biol., 14, 518-528, https://doi.org/10.1038/nrm3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hume, S., Dianov, G. L., and Ramadan, K. (2020) A unified model for the G1/S cell cycle transition, Nucleic Acids Res., 48, 12483-12501, https://doi.org/10.1093/nar/gkaa1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malumbres, M., and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm, Nat. Rev. Cancer, 9, 153-166, https://doi.org/10.1038/nrc2602.

    Article  CAS  PubMed  Google Scholar 

  69. Mujwar, S., Mojzych, M., and Kontek, R. (2022) Cyclin-dependent kinases in DNA damage response, Biochim. Biophy. Acta Rev. Cancer, 1877, 188716, https://doi.org/10.1016/j.bbcan.2022.188716.

    Article  CAS  Google Scholar 

  70. Williams, A. B., and Schumacher, B. (2016) p53 in the DNA-damage-repair process, Cold Spring Harb. Perspect. Med., 6, a026070, https://doi.org/10.1101/cshperspect.a026070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barnum, K. J., and Connell, M. J. O. (2014) Cell cycle regulation by checkpoints, Methods Mol. Biol., 1170, 29-40, https://doi.org/10.1007/978-1-4939-0888-2.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Patil, M., Pabla, N., and Dong, Z. (2013) Checkpoint kinase 1 in DNA damage response and cell cycle regulation, Cell. Mol. Life Sci., 70, 4009-4021, https://doi.org/10.1007/s00018-013-1307-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Taylor, M. R. G., and Yeeles, J. T. P. (2019) Dynamics of replication fork progression following helicase – polymerase uncoupling in eukaryotes, J. Mol. Biol., 431, 2040-2049, https://doi.org/10.1016/j.jmb.2019.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Byun, T. S., Pacek, M., Yee, M., Walter, J. C., and Cimprich, K. A. (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint, Genes Dev., 19, 1040-1052, https://doi.org/10.1101/gad.1301205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wong, R. P., Garcia-Rodriguez, N., Zilio, N., Hanulova, M., and Ulrich, H. (2020) Processing of DNA polymerase-blocking lesions during genome replication is spatially and temporally segregated from replication forks, Mol. Cell, 77, 3-16.e4, https://doi.org/10.1016/j.molcel.2019.09.015.

    Article  CAS  PubMed  Google Scholar 

  76. Zou, L., and Elledge, S. J. (2003) Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes, Science, 300, 1542-1548, https://doi.org/10.1126/science.1083430.

    Article  CAS  PubMed  Google Scholar 

  77. Blackford, A. N., and Jackson, S. P. (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response, Mol. Cell, 66, 801-817, https://doi.org/10.1016/j.molcel.2017.05.015.

    Article  CAS  PubMed  Google Scholar 

  78. Saldivar, J. C., Cortez, D., and Cimprich, K. A. (2017) The essential kinase ATR: ensuring faithful duplication of a challenging genome, Nat. Rev. Mol. Cell Biol., 18, 622-636, https://doi.org/10.1038/nrm.2017.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cimprich, K. A., and Cortez, D. (2008) ATR: an essential regulator of genome integrity, Nat. Rev. Mol. Cell Biol., 9, 616-627, https://doi.org/10.1038/nrm2450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, X., and Heyer, W.-D. (2008) Homologous recombination in DNA repair and DNA damage tolerance, Cell Res., 18, 99-113, https://doi.org/10.1038/cr.2008.1.

    Article  CAS  PubMed  Google Scholar 

  81. Chang, D. J., and Cimprich, K. A. (2009) DNA damage tolerance: when it’s OK to make mistakes, Nat. Chem. Biol., 5, 82-90, https://doi.org/10.1038/nchembio.139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Neelsen, K. J., and Lopes, M. (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response, Nat. Rev. Mol. Cell Biol., 16, 207-220, https://doi.org/10.1038/nrm3935.

    Article  CAS  PubMed  Google Scholar 

  83. Berti, M., Cortez, D., and Lopes, M. (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress, Nat. Rev. Mol. Cell Biol., 21, 633-665, https://doi.org/10.1038/s41580-020-0257-5.

    Article  CAS  PubMed  Google Scholar 

  84. Calvo, P. A., Sastre-Moreno, G., Perpiñá, C., Guerra, S., Martínez-Jiménez, M. I., and Blanco, L. (2019) The invariant glutamate of human PrimPol DxE motif is critical for its Mn2+-dependent distinctive activities, DNA Repair (Amst.), 77, 65-75, https://doi.org/10.1016/j.dnarep.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  85. Boldinova, E. O., Manukyan, A. A., and Makarova, A. V. (2021) The DNA ligands Arg47 and Arg76 are crucial for catalysis by human PrimPol, DNA Repair (Amst.), 100, 103048, https://doi.org/10.1016/j.dnarep.2021.103048.

    Article  CAS  PubMed  Google Scholar 

  86. Mourón, S., Rodriguez-Acebes, S., Martínez-Jiménez, M. I., García-Gómez, S., Chocrón, S., Blanco, L., and Méndez, J. (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol, Nat. Struct. Mol. Biol., 20, 1383-1389, https://doi.org/10.1038/nsmb.2719.

    Article  CAS  PubMed  Google Scholar 

  87. Martínez-Jiménez, M. I., Calvo, P. A., García-Gómez, S., Guerra-González, S., and Blanco, L. (2018) The Zn-finger domain of human PrimPol is required to stabilize the initiating nucleotide during DNA priming, Nucleic Acids Res., 46, 4138-4151, https://doi.org/10.1093/nar/gky230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tokarsky, E. J., Wallenmeyer, P. C., Phi, K. K., and Suo, Z. (2016) Significant impact of divalent metal ions on the fidelity, sugar selectivity, and drug incorporation efficiency of human PrimPol, DNA Repair (Amst.), 49, 51-59, https://doi.org/10.1016/j.dnarep.2016.11.003.

    Article  CAS  PubMed  Google Scholar 

  89. Traut, T. W. (1994) Physiological concentrations of purines and pyrimidines, Mol. Cel. Biochem., 140, 1-22, https://doi.org/10.1007/BF00928361.

    Article  CAS  Google Scholar 

  90. McElhinny, S. A., Watts, B. E., Kumar, D., Watt, D. L., and Lundström, E. (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases, Proc. Natl. Acad. Sci. USA, 107, 4949-4954, https://doi.org/10.1073/pnas.0914857107.

    Article  Google Scholar 

  91. Blanco, L., Calvo, P. A., Diaz-Talavera, A., Carvalho, G., Calero, N., Martínez-Carrón, A., Velázquez-Ruiz, C., Villadangos, S., Guerra, S., and Martínez-Jiménez, M. I. (2019) Mechanism of DNA primer synthesis by human PrimPol, Enzymes, 45, 289-310, https://doi.org/10.1016/bs.enz.2019.06.003.

    Article  CAS  PubMed  Google Scholar 

  92. Butler, T. J., Estep, K. N., Sommers, J. A., Maul, R. W., Moore, A. Z., Bandinelli, S., Cucca, F., Tuke, M. A., Wood, A. R., Bharti, S. K., Bogenhagen, D. F., Yakubovskaya, E., Garcia-Diaz, M., Guilliam, T. A., Byrd, A. K., Raney, K. D., Doherty, A. J., Ferrucci, L., Schlessinger, D., Ding, J., and Brosh, R. M., Jr. (2020) Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro, Hum. Mol. Genet., 29, 1292-1309, https://doi.org/10.1093/hmg/ddaa043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boldinova, E. O., Belousova, E. A., Gagarinskaya, D. I., Maltseva, E. A., Khodyreva, S. N., Lavrik, O. I., and Makarova, A. V. (2020) Strand displacement activity of PrimPol, Int. J. Mol. Sci., 21, 9027, https://doi.org/10.3390/ijms21239027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Torregrosa-Muñumer, R., Forslund, J., Goffart, S., Pfeiffer, A., Stojkovic, G., Carvalho, G., Al-Furoukh, N., Blanco, L., Wanrooij, S., and Pohjoismäki, J. L. O. (2017) PrimPol is required for replication reinitiation after mtDNA damage, Proc. Natl. Acad. Sci. USA, 114, 11398-11403, https://doi.org/10.1073/pnas.1705367114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mehta, K. P. M., Thada, V., Zhao, R., Krishnamoorthy, A., Leser, M., Rose, K. L., and Cortez, D. (2022) CHK1 phosphorylates PRIMPOL to promote replication stress tolerance, Sci. Adv., 8, eabm0314, https://doi.org/10.1126/sciadv.abm0314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bailey, L. J., Teague, R., Kolesar, P., Bainbridge, L. J., Lindsay, H. D., and Doherty, A. J. (2021) PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle, Sci. Adv., 7, eabh1004, https://doi.org/10.1126/sciadv.abh1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keiji, T. (2009) The proteasome: overview of structure and functions, Proc. Jpn., 85, 12-36, https://doi.org/10.2183/pjab/85.12.

    Article  CAS  Google Scholar 

  98. Yan, Y., Xu, Z., Huang, J., Guo, G., Gao, M., Kim, W., Zeng, X., Kloeber, J. A., Zhu, Q., Zhao, F., Luo, K., and Lou, Z. (2020) The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization, Nucleic Acids Res., 48, 12711-12726, https://doi.org/10.1093/nar/gkaa1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yoshimura, A., Oikawa, M., Jinbo, H., Hasegawa, Y., Enomoto, T., and Seki, M. (2019) WRNIP1 controls the amount of PrimPol, Biol. Pharm. Bull., 42, 764-769, https://doi.org/10.1248/bpb.b18-00955.

    Article  CAS  PubMed  Google Scholar 

  100. Guilliam, T. A., Jozwiakowski, S. K., Ehlinger, A., Barnes, R. P., Rudd, S. G., Bailey, L. J., Skehel, J. M., Eckert, K. A., Chazin, W. J., and Doherty, A. J. (2015) Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins, Nucleic Acids Res., 43, 1056-1068, https://doi.org/10.1093/nar/gku1321.

    Article  CAS  PubMed  Google Scholar 

  101. Martínez-Jiménez, M. I., Lahera, A., and Blanco, L. (2017) Human PrimPol activity is enhanced by RPA, Sci. Rep., 7, 783, https://doi.org/10.1038/s41598-017-00958-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boldinova, E. O., Baranovskiy, A. G., Gagarinskaya, D. I., Manukyan, A. A., Makarova, A. V., and Tahirov, T. H. (2023) The role of catalytic and regulatory domains of human PrimPol in DNA binding and synthesis, Nucleic Acids Res., gkad507, https://doi.org/10.1093/nar/gkad507.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gagarinskaya, D. I., and Makarova, A. V. (2020) A multifunctional protein PolDIP2 in DNA translesion synthesis, Adv. Exp. Med. Biol., 1241, 35-45, https://doi.org/10.1007/978-3-030-41283-8-3.

    Article  CAS  PubMed  Google Scholar 

  104. Maga, G., Crespan, E., Markkanen, E., Imhof, R., Furrer, A., Villani, G., Hübscher, U., and Van Loon, B. (2013) DNA polymerase δ-interacting protein 2 is a processivity factor for DNA polymerase λ during 8-oxo-7,8-dihydroguanine bypass, Proc. Natl. Acad. Sci. USA, 110, 18850-18855, https://doi.org/10.1073/pnas.1308760110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tissier, A., Janel-bintz, R., Coulon, S., Klaile, E., Kannouche, P., Fuchs, R. P. P., and Cordonnier, A. M. (2010) Crosstalk between replicative and translesional DNA polymerases: PDIP38 interacts directly with Pol eta, DNA Repair (Amst.), 9, 922-928, https://doi.org/10.1016/j.dnarep.2010.04.010.

    Article  CAS  PubMed  Google Scholar 

  106. Guilliam, T. A., Bailey, L. J., Brissett, N. C., and Doherty, A. J. (2016) PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities, Nucleic Acids Res., 44, 3317-3329, https://doi.org/10.1093/nar/gkw175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kazutoshi, K., Stojkovič, G., Velázquez-Ruiz, C., Martínez-Jiménez, M. I., Doimo, M., Laurent, T., Berner, A., Pérez-Rivera, A. E., Jenninger, L., Blanco, L., and Wanrooij, S. (2021) A unique arginine cluster in PolDIP2 enhances nucleotide binding and DNA synthesis by PrimPol, Nucleic Acids Res., 49, 2179-2191, https://doi.org/10.1093/nar/gkab049.

    Article  CAS  Google Scholar 

  108. Tsuda, M., Ogawa, S., Ooka, M., Kobayashi, K., Hirota, K., Wakasugi, M., Matsunaga, T., Sakuma, T., Yamamoto, T., Chikuma, S., Sasanuma, H., Debatisse, M., Doherty, A. J., Fuchs, R. P., and Takeda, S. (2019) PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching, PLoS One, 14, e0213383, https://doi.org/10.1371/journal.pone.0213383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taylor, M. R. G., and Yeeles, J. T. P. (2018) The initial response of a eukaryotic replisome to DNA damage, Mol. Cell, 70, 1067-1080, https://doi.org/10.1016/j.molcel.2018.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lyu, K., Kumagai, A., and Dunphy, W. G. (2019) RPA-coated single-stranded DNA promotes the ETAA1-dependent activation of ATR, Cell Cycle, 18, 898-913, https://doi.org/10.1080/15384101.2019.1598728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Van, C., Yan, S., Michael, W. M., Waga, S., and Cimprich, K. A. (2010) Continued primer synthesis at stalled replication forks contributes to checkpoint activation, J. Cell Biol., 189, 233-246, https://doi.org/10.1083/jcb.200909105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vallerga, M. B., Mansilla, S. F., Federico, M. B., Bertolin, A. P., and Gottifredi, V. (2015) Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation, Proc. Natl. Acad. Sci. USA, 112, 6624-6633, https://doi.org/10.1073/pnas.1508543112.

    Article  CAS  Google Scholar 

  113. Bai, G., Kermi, C., Stoy, H., Schiltz, C. J., Bacal, J., Zaino, A. M., Hadden, M. K., Eichman, B. F., Lopes, M., and Cimprich, K. A. (2020) HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis, Mol. Cell, 78, 1237-1251.e7, https://doi.org/10.1016/j.molcel.2020.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kang, Z., Fu, P., Alcivar, A. L., Fu, H., Redon, C., Foo, T. K., Zuo, Y., Ye, C., Baxley, R., Madireddy, A., Buisson, R., Bielinsky, A., Zou, L., Shen, Z., Aladjem, M. I., and Xia, B. (2021) BRCA2 associates with MCM10 to suppress PRIMPOL-mediated repriming and single-stranded gap formation after DNA damage, Nat. Commun., 12, 5966, https://doi.org/10.1038/s41467-021-26227-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Couch, F. B., Bansbach, C. E., Driscoll, R., Luzwick, J. W., Glick, G. G., Bétous, R., Carroll, C. M., Jung, S. Y., Qin, J., Cimprich, K. A., and Cortez, D. (2013) ATR phosphorylates SMARCAL1 to prevent replication fork collapse, Genes Dev., 27, 1610-1623, https://doi.org/10.1101/gad.214080.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Berti, M., Chaudhuri, A. R., Thangavel, S., Gomathinayagam, S., Kenig, S., Vujanovic, M., Odreman, F., Glatter, T., Graziano, S., Mendoza-Maldonado, R., Marino, F., Lucic, B., Biasin, V., Gstaiger, M., Aebersold, R., Sidorova, J. M., Monnat, R. J. Jr., Lopes, M., and Vindigni, A. (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition, Nat. Struct. Mol. Biol., 20, 347-354, https://doi.org/10.1038/nsmb.2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Giansanti, C., Manzini, V., Dickmanns, A., Dickmanns, A., Palumbieri, M. D., Sanchi, A., Kienle, S. M., Rieth, S., Scheffner, M., Lopes, M., and Dobbelstein, M. (2022) MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression, Cell Rep., 39, 110879, https://doi.org/10.1016/j.celrep.2022.110879.

    Article  CAS  PubMed  Google Scholar 

  118. Genois, M. M., Gagné, J. P., Yasuhara, T., Jackson, J., Saxena, S., Langelier, M. F., Ahel, I., Bedford, M. T., Pascal, J. M., Vindigni, A., Poirier, G. G., and Zou, L. (2021) CARM1 regulates replication fork speed and stress response by stimulating PARP1, Mol. Cell, 81, 784-800.e8, https://doi.org/10.1016/j.molcel.2020.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Leuzzi, G., Marabitti, V., Pichierri, P., and Franchitto, A. (2016) WRNIP 1 protects stalled forks from degradation and promotes fork restart after replication stress, EMBO J., 35, 1437-1451, https://doi.org/10.15252/embj.201593265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taglialatela, A., Leuzzi, G., Sannino, V., Cuella-Martin, R., Huang, J. W., Wu-Baer, F., Baer, R., Costanzo, V., and Ciccia, A. (2021) REV1-Polζ maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps, Mol. Cell, 81, 4008-4025.e7, https://doi.org/10.1016/j.molcel.2021.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, J., and Zhang, Q. (2015) Primpol mutation: functional study does not always reveal the truth, Investig. Ophthalmol. Vis. Sci., 56, 1181-1182, https://doi.org/10.1167/iovs.14-16072.

    Article  CAS  Google Scholar 

  122. Yuan, H., Wang, Q., Li, Y., Cheng, S., Liu, J., and Liu, Y. (2020) Concurrent pathogenic variants in SLC6A1/NOTCH1/PRIMPOL genes in a Chinese patient with myoclonic-atonic epilepsy, mild aortic valve stenosis and high myopia, BMC Med. Genet., 21, 93, https://doi.org/10.1186/s12881-020-01035-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pilzecker, B., Buoninfante, O. A., Pritchard, C., Blomberg, O. S., Huijbers, I. J., Van Den Berk, P. C. M., and Jacobs, H. (2016) PrimPol prevents APOBEC/AID family mediated DNA mutagenesis, Nucleic Acids Res., 44, 4734-4744, https://doi.org/10.1093/nar/gkw123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Díaz-Talavera, A., Montero-Conde, C., Leandro-García, L. J., and Robledo, M. (2022) PrimPol: a breakthrough among DNA replication enzymes and a potential new target for cancer therapy, Biomolecules, 12, 248, https://doi.org/10.3390/biom12020248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yu. I. Pavlov and A. G. Baranovskiy for valuable discussions and advice.

Funding

This work was supported by the Russian Science Foundation (grant no. 22-24-20150 to E.O.B).

Author information

Authors and Affiliations

Authors

Contributions

E.O.B. figure preparation, writing the draft of the paper; A.V.M. draft correction.

Corresponding author

Correspondence to Elizaveta O. Boldinova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain studies involving human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldinova, E.O., Makarova, A.V. Regulation of Human DNA Primase-Polymerase PrimPol. Biochemistry Moscow 88, 1139–1155 (2023). https://doi.org/10.1134/S0006297923080084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923080084

Keywords

Navigation