Skip to main content
Log in

Long-Term Experimental Hyperglycemia Does Not Impair Macrovascular Endothelial Barrier Integrity and Function in vitro

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Hyperglycemia is a hallmark of type 2 diabetes implicated in vascular endothelial dysfunction and cardiovascular complications. Many in vitro studies identified endothelial apoptosis as an early outcome of experimentally modeled hyperglycemia emphasizing cell demise as a significant factor of vascular injury. However, endothelial apoptosis has not been observed in vivo until the late stages of type 2 diabetes. Here, we studied the long-term (up to 4 weeks) effects of high glucose (HG, 30 mM) on human umbilical vein endothelial cells (HUVEC) in vitro. HG did not alter HUVEC monolayer morphology, ROS levels, NO production, and exerted minor effects on the HUVEC apoptosis markers. The barrier responses to various clues were indistinguishable from those by cells cultured in physiological glucose (5 mM). Tackling the key regulators of cytoskeletal contractility and endothelial barrier revealed no differences in the histamine-induced intracellular Ca2+ responses, nor in phosphorylation of myosin regulatory light chain or myosin light chain phosphatase. Altogether, these findings suggest that vascular endothelial cells may well tolerate HG for relatively long exposures and warrant further studies to explore mechanisms involved in vascular damage in advanced type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

EBM:

endothelial basal medium

EGM:

endothelial growth medium

eNOS:

endothelial NO synthase

HUVEC:

human umbilical vein endothelial cells

MLCK:

myosin light chain kinase

MLCP:

myosin light chain phosphatase

MYPT1:

myosin phosphatase target subunit 1

RLC:

myosin regulatory light chain

ROCK:

RhoA-associated protein kinase

ROS:

reactive oxygen species

TER:

transendothelial electric resistance

References

  1. Giugliano, D., Ceriello, A., and Paolisso, G. (1996) Oxidative stress and diabetic vascular complications, Diabetes Care, 19, 257-267, https://doi.org/10.2337/diacare.19.3.257.

    Article  CAS  PubMed  Google Scholar 

  2. Goligorsky, M. S. (2017) Vascular endothelium in diabetes, Am. J. Physiol. Renal Physiol., 312, F266-F275, https://doi.org/10.1152/ajprenal.00473.2016.

    Article  CAS  PubMed  Google Scholar 

  3. Bakker, W., Eringa, E. C., Sipkema, P., and van Hinsbergh, V. W. (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity, Cell Tissue Res., 335, 165-189, https://doi.org/10.1007/s00441-008-0685-6.

    Article  CAS  PubMed  Google Scholar 

  4. Del Turco, S., Gaggini, M., Daniele, G., Basta, G., Folli, F., Sicari, R., and Gastaldelli, A. (2013) Insulin resistance and endothelial dysfunction: a mutual relationship in cardiometabolic risk, Curr. Pharm. Des., 19, 2420-2431, https://doi.org/10.2174/1381612811319130010.

    Article  CAS  PubMed  Google Scholar 

  5. Jansson, P. A. (2007) Endothelial dysfunction in insulin resistance and type 2 diabetes, J. Intern. Med., 262, 173-183, https://doi.org/10.1111/j.1365-2796.2007.01830.x.

    Article  CAS  PubMed  Google Scholar 

  6. Knapp, M., Tu, X., and Wu, R. (2019) Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy, Acta Pharmacol. Sin., 40, 1-8, https://doi.org/10.1038/s41401-018-0042-6.

    Article  CAS  PubMed  Google Scholar 

  7. Varma, S., Lal, B. K., Zheng, R., Breslin, J. W., Saito, S., Pappas, P. J., Hobson, R. W., 2nd, and Durán, W. N. (2005) Hyperglycemia alters PI3k and Akt signaling and leads to endothelial cell proliferative dysfunction, Am. J. Physiol. Heart Circ. Physiol., 289, H1744-H1751, https://doi.org/10.1152/ajpheart.01088.2004.

    Article  CAS  PubMed  Google Scholar 

  8. Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes, Endocr. Rev., 23, 599-622, https://doi.org/10.1210/er.2001-0039.

    Article  CAS  PubMed  Google Scholar 

  9. Green, K., Brand, M. D., and Murphy, M. P. (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes, Diabetes, 53, S110-S118, https://doi.org/10.2337/diabetes.53.2007.s110.

    Article  CAS  PubMed  Google Scholar 

  10. Shah, M. S., Brownlee, M. (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes, Circ. Res., 118, 1808-1829, https://doi.org/10.1161/CIRCRESAHA.116.306923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiménez, N., Krouwer, V. J., and Post, J. A. (2013) A new, rapid and reproducible method to obtain high quality endothelium in vitro, Cytotechnology, 65, 1-14, https://doi.org/10.1007/s10616-012-9459-9.

    Article  CAS  PubMed  Google Scholar 

  12. Navone, S. E., Marfia, G., Invernici, G., Cristini, S., Nava, S., Balbi, S., Sangiorgi, S., Ciusani, E., Bosutti, A., Alessandri, G., Slevin, M., and Parati, E. A. (2013) Isolation and expansion of human and mouse brain microvascular endothelial cells, Nat. Protoc., 8, 1680-1693, https://doi.org/10.1038/nprot.2013.107.

    Article  CAS  PubMed  Google Scholar 

  13. Hauser, S., Jung, F., and Pietzsch, J. (2017) Human endothelial cell models in biomaterial research, Trends Biotechnol., 35, 265-277, https://doi.org/10.1016/j.tibtech.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  14. Medina-Leyte, D. J., Domínguez-Pérez, M., Mercado, I., Villarreal-Molina, M. T., and Jacobo-Albavera, L. (2020) Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: a review, Appl. Sci., 10, 938, https://doi.org/10.3390/app10030938.

    Article  CAS  Google Scholar 

  15. Vorotnikov, A. V., Khapchaev, A. Yu., Nickashin, A. V., and Shirinsky, V. P. (2022) In vitro modeling of diabetes impact on vascular endothelium: Are essentials engaged to tune metabolism? Biomedicines, 10, 3181, https://doi.org/10.3390/biomedicines10123181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van den Oever, I. A., Raterman, H. G., Nurmohamed, M. T., and Simsek, S. (2010) Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus, Mediators Inflamm., 2010, 792393, https://doi.org/10.1155/2010/792393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gill, S. E., Rohan, M., and Mehta, S. (2015) Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo, Respir. Res., 16, 109, https://doi.org/10.1186/s12931-015-0266-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mallat, Z., and Tedgui, A. (2000) Apoptosis in the vasculature: mechanisms and functional importance, Br. J. Pharmacol., 130, 947-962, https://doi.org/10.1038/sj.bjp.0703407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Winn, R. K., and Harlan, J. M. (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases, J. Thromb. Haemost., 3, 1815-1824, https://doi.org/10.1111/j.1538-7836.2005.01378.x.

    Article  CAS  PubMed  Google Scholar 

  20. Quagliaro, L., Piconi, L., Assaloni, R., Martinelli, L., Motz, E., and Ceriello, A. (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation, Diabetes, 52, 2795-2804, https://doi.org/10.2337/diabetes.52.11.2795.

    Article  CAS  PubMed  Google Scholar 

  21. Risso, A., Mercuri, F., Quagliaro, L., Damante, G., and Ceriello, A. (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture, Am. J. Physiol. Endocrinol. Metab., 281, E924-E930, https://doi.org/10.1152/ajpendo.2001.281.5.E924.

    Article  CAS  PubMed  Google Scholar 

  22. Komarova, Y., and Malik, A. B. (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways, Annu. Rev. Physiol., 72, 463-493, https://doi.org/10.1146/annurev-physiol-021909-135833.

    Article  CAS  PubMed  Google Scholar 

  23. Cahill, P. A., and Redmond, E. M. (2016) Vascular endothelium – Gatekeeper of vessel health, Atherosclerosis, 248, 97-109, https://doi.org/10.1016/j.atherosclerosis.2016.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di, A., Mehta, D., and Malik, A. B. (2016) ROS-activated calcium signaling mechanisms regulating endothelial barrier function, Cell Calcium, 60, 163-171, https://doi.org/10.1016/j.ceca.2016.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., and Nishigaki, I. (2013) The vascular endothelium and human diseases, Int. J. Biol. Sci., 9, 1057-1069, https://doi.org/10.7150/ijbs.7502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goeckeler, Z. M., Bridgman, P. C., and Wysolmerski, R. B. (2008) Nonmuscle myosin II is responsible for maintaining endothelial cell basal tone and stress fiber integrity, Am. J. Physiol. Cell Physiol., 295, C994-C1006, https://doi.org/10.1152/ajpcell.00318.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dalal, P. J., Muller, W. A., and Sullivan, D. P. (2020) Endothelial cell calcium signaling during barrier function and inflammation, Am. J. Pathol., 190, 535-542, https://doi.org/10.1016/j.ajpath.2019.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kugelmann, D., Rotkopf, L. T., Radeva, M. Y., Garcia-Ponce, A., Walter, E., and Waschke, J. (2018) Histamine causes endothelial barrier disruption via Ca2+-mediated RhoA activation and tension at adherens junctions, Sci. Rep., 8, 13229, https://doi.org/10.1038/s41598-018-31408-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Nieuw Amerongen, G. P., Draijer, R., Vermeer, M. A., and van Hinsbergh, V. W. (1998) Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA, Circ. Res., 83, 1115-1123, https://doi.org/10.1161/01.res.83.11.1115.

    Article  CAS  PubMed  Google Scholar 

  30. Khapchaev, A. Y., and Shirinsky, V. P. (2016) Myosin light chain kinase MYLK1: anatomy, interactions, functions, and regulation, Biochemistry (Moscow), 81, 1676-1697, https://doi.org/10.1134/S000629791613006X.

    Article  CAS  PubMed  Google Scholar 

  31. Shimokawa, H., Sunamura, S., and Satoh, K. (2016) RhoA/Rho-kinase in the cardiovascular system, Circ. Res., 118, 352-366, https://doi.org/10.1161/CIRCRESAHA.115.306532.

    Article  CAS  PubMed  Google Scholar 

  32. Kazakova, O. A., Khapchaev, A. Y., and Shirinsky, V. P. (2020) MLCK and ROCK mutualism in endothelial barrier dysfunction, Biochimie, 168, 83-91, https://doi.org/10.1016/j.biochi.2019.10.010.

    Article  CAS  PubMed  Google Scholar 

  33. Ito, M., Nakano, T., Erdodi, F., and Hartshorne, D. J. (2004) Myosin phosphatase: structure, regulation and function, Mol. Cell. Biochem., 259, 197-209, https://doi.org/10.1023/b:mcbi.0000021373.14288.00.

    Article  CAS  PubMed  Google Scholar 

  34. Kim, K. M., Csortos, C., Czikora, I., Fulton, D., Umapathy, N. S., Olah, G., and Verin, A. D. (2012) Molecular characterization of myosin phosphatase in endothelium, J. Cell. Physiol., 227, 1701-1708, https://doi.org/10.1002/jcp.22894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beckers, C. M., Knezevic, N., Valent, E. T., Tauseef, M., Krishnan, R., Rajendran, K., Hardin, C. C., Aman, J., van Bezu, J., Sweetnam, P., van Hinsbergh, V. W., Mehta, D., and van Nieuw Amerongen, G. P. (2015) ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension, Vascul. Pharmacol., 70, 45-54, https://doi.org/10.1016/j.vph.2015.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Birukova, A. A., Smurova, K., Birukov, K. G., Kaibuchi, K., Garcia, J. G., and Verin, A. D. (2004) Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction, Microvasc. Res., 67, 64-77, https://doi.org/10.1016/j.mvr.2003.09.007.

    Article  CAS  PubMed  Google Scholar 

  37. Wainwright, M. S., Rossi, J., Schavocky, J., Crawford, S., Steinhorn, D., Velentza, A. V., Zasadzki, M., Shirinsky, V., Jia, Y., Haiech, J., Van Eldik, L. J., and Watterson, D. M. (2003) Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment, Proc. Natl. Acad. Sci. USA, 100, 6233-6238, https://doi.org/10.1073/pnas.1031595100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langouche, L., Vanhorebeek, I., Vlasselaers, D., Vander Perre, S., Wouters, P. J., Skogstrand, K., Hansen, T. K., and Van den Berghe, G. (2005) Intensive insulin therapy protects the endothelium of critically ill patients, J. Clin. Invest., 115, 2277-2286, https://doi.org/10.1172/JCI25385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nathan, D. M., Cleary, P. A., Backlund, J. Y., Genuth, S. M., Lachin, J. M., Orchard, T. J., Raskin, P., Zinman, B., and Diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study research group (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes, N. Engl. J. Med., 353, 2643-2653, https://doi.org/10.1056/NEJMoa052187.

    Article  PubMed  Google Scholar 

  40. Gunduz, D., Thom, J., Hussain, I., Lopez, D., Hartel, F. V., Erdogan, A., Grebe, M., Sedding, D., Piper, H. M., Tillmanns, H., Noll, T., and Aslam, M. (2010) Insulin stabilizes microvascular endothelial barrier function via phosphatidylinositol 3-Kinase/Akt-mediated Rac1 activation, Arterioscler. Thromb. Vasc. Biol., 30, 1237-1245, https://doi.org/10.1161/ATVBAHA.110.203901.

    Article  CAS  PubMed  Google Scholar 

  41. Samsonov, M. V., Podkuychenko, N. V., Lankin, V. Z., Vorotnikov, A. V., and Shirinsky, V. P. (2021) Malondialdehyde but not methylglyoxal impairs insulin signaling, NO production, and endothelial barrier, Biochemistry (Moscow) Suppl. Series A Memb. Cell Biol., 15, 195-200, https://doi.org/10.1134/S1990747821030089.

    Article  CAS  Google Scholar 

  42. Samsonov, M. V., Podkuychenko, N. V., Khapchaev, A. Y., Efremov, E. E., Yanushevskaya, E. V., Vlasik, T. N., Lankin, V. Z., Stafeev, I. S., Skulachev, M. V., Shestakova, M. V., Vorotnikov, A. V., and Shirinsky, V. P. (2022) AICAR protects vascular endothelial cells from oxidative injury induced by the long-term palmitate excess, Int. J. Mol. Sci., 23, 211, https://doi.org/10.3390/ijms23010211.

    Article  CAS  Google Scholar 

  43. Printseva, O., Peclo, M. M., and Gown, A. M. (1992) Various cell types in human atherosclerotic lesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3, Am. J. Pathol., 140, 889-896.

    PubMed Central  Google Scholar 

  44. Segawa, K., and Nagata, S. (2015) An apoptotic “eat me” signal: phosphatidylserine exposure, Trends Cell Biol., 25, 639-650, https://doi.org/10.1016/j.tcb.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  45. Bui, T. M., Wiesolek, H. L., and Sumagin, R. (2020) ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis, J. Leukoc. Biol., 108, 787-799, https://doi.org/10.1002/JLB.2MR0220-549R.

    Article  CAS  PubMed  Google Scholar 

  46. Porter, A. G., and Janicke, R. U. (1999) Emerging roles of caspase-3 in apoptosis, Cell Death Differ., 6, 99-104, https://doi.org/10.1038/sj.cdd.4400476.

    Article  CAS  PubMed  Google Scholar 

  47. Antonova, O. A., Loktionova, S. A., Romanov, Y. A., Shustova, O. N., Khachikian, M. V., and Mazurov, A. V. (2009) Activation and damage of endothelial cells upon hypoxia/reoxygenation. Effect of extracellular pH, Biochemistry (Moscow), 74, 605-612, https://doi.org/10.1134/s0006297909060030.

    Article  CAS  PubMed  Google Scholar 

  48. Kazakova, O. A., Khapchaev, A. Y., Ragimov, A. A., Salimov, E. L., and Shirinsky, V. P. (2019) Western blotting-based quantitative measurement of myosin II regulatory light chain phosphorylation in small amounts of non-muscle cells, Biochemistry (Moscow), 84, 11-19, https://doi.org/10.1134/S0006297919010024.

    Article  CAS  PubMed  Google Scholar 

  49. Baumgartner-Parzer, S. M., Wagner, L., Pettermann, M., Grillari, J., Gessl, A., and Waldhausl, W. (1995) High-glucose – triggered apoptosis in cultured endothelial cells, Diabetes, 44, 1323-1327, https://doi.org/10.2337/diab.44.11.1323.

    Article  CAS  PubMed  Google Scholar 

  50. Fan, W., Han, D., Sun, Z., Ma, S., Gao, L., Chen, J., Li, X., Li, X., Fan, M., Li, C., Huc, D., Wanga, Y., and Cao, F. (2017) Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation, Free Radic. Biol. Med., 108, 725-740, https://doi.org/10.1016/j.freeradbiomed.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  51. Ido, Y., Carling, D., and Ruderman, N. (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation, Diabetes, 51, 159-167, https://doi.org/10.2337/diabetes.51.1.159.

    Article  CAS  PubMed  Google Scholar 

  52. Sheu, M. L., Ho, F. M., Yang, R. S., Chao, K. F., Lin, W. W., Lin-Shiau, S. Y., and Liu, S. H. (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway, Arterioscler. Thromb. Vasc. Biol., 25, 539-545, https://doi.org/10.1161/01.ATV.0000155462.24263.e4.

    Article  CAS  PubMed  Google Scholar 

  53. Pal, P. B., Sonowal, H., Shukla, K., Srivastava, S. K., and Ramana, K. V. (2019) Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-α1/mTOR pathway, J. Mol. Endocrinol., 63, 11-25, https://doi.org/10.1530/JME-19-0080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kiss, A., Erdődi, F., and Lontay, B. (2019) Myosin phosphatase: unexpected functions of a long-known enzyme, Biochim. Biophys. Acta Mol. Cell Res., 1866, 2-15, https://doi.org/10.1016/j.bbamcr.2018.07.023.

    Article  CAS  PubMed  Google Scholar 

  55. Federici, M., Menghini, R., Mauriello, A., Hribal, M. L., Ferrelli, F., Lauro, D., Sbraccia, P., Spagnoli, L. G., Sesti, G., and Lauro, R. (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells, Circulation, 106, 466-472, https://doi.org/10.1161/01.cir.0000023043.02648.51.

    Article  CAS  PubMed  Google Scholar 

  56. Lenin, R., Nagy, P. G., Jha, K. A., and Gangaraju, R. (2019) GRP78 translocation to the cell surface and O-GlcNAcylation of VE-Cadherin contribute to ER stress-mediated endothelial permeability, Sci. Rep., 9, 10783, https://doi.org/10.1038/s41598-019-47246-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (project no. 19-15-00361; studies of HUVEC viability and long-term ECIS experiments) and Russian Foundation for Basic Research (project no. 20-015-00565; other experiments).

Author information

Authors and Affiliations

Authors

Contributions

K.A.Y., V.A.V., and S.V.P. developed the study concept and methodology; K.A.Y., A.O.A., S.M.V., K.O.A., and V.A.V. performed the experiments; K.A.Y. and V.A.V. curated the data; K.A.Y. and V.A.V. wrote the manuscript; K.A.Y., V.A.V., and S.V.P. supervised the study; K.A.Y. and S.V.P. acquired the funding.

Corresponding author

Correspondence to Asker Y. Khapchaev.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khapchaev, A.Y., Antonova, O.A., Kazakova, O.A. et al. Long-Term Experimental Hyperglycemia Does Not Impair Macrovascular Endothelial Barrier Integrity and Function in vitro. Biochemistry Moscow 88, 1126–1138 (2023). https://doi.org/10.1134/S0006297923080072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923080072

Keywords

Navigation