Skip to main content
Log in

Constitutive Androstane Receptor Agonist Initiates Metabolic Activity Required for Hepatocyte Proliferation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Activation of the constitutive androstane receptor (CAR, NR1I3) by chemical compounds induces liver hyperplasia in rodents. 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a mouse CAR agonist, is most often used to study chemically induced liver hyperplasia and hepatocyte proliferation in vivo. TCPOBOP is a potent murine liver chemical mitogen, which induces rapid liver hyperplasia in mice independently of liver injury. In recent years, great amount of data has been accumulated on the transcription program that characterizes the TCPOBOP-induced hepatocyte proliferation. However, there are only few data about the metabolic requirements of hepatocytes that divide upon exposure to xenobiotics. In the present study, we have employed liquid chromatography – mass spectrometry technology combined with statistical analysis to investigate metabolite profile of small biomolecules, in order to identify key metabolic changes in the male mouse liver tissue after TCPOBOP administration. Analysis of biochemical pathways of the differentially affected metabolites in the mouse liver demonstrated significant TCPOBOP-mediated enrichment of several processes including those associated with nucleotide metabolism, amino acid metabolism, and energy substrate metabolism. Our findings provide evidence to support the conclusion that the CAR agonist, TCPOBOP, initiates an intracellular program that promotes global coordinated metabolic activities required for hepatocyte proliferation. Our metabolic data might provide novel insight into the biological mechanisms that occur during the TCPOBOP-induced hepatocyte proliferation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

CAR:

constitutive androstane receptor

CYP2B :

gene encoding cytochrome P450 from subfamily 2B

TCPOBOP:

1,4-bis[2-(3,5-dichloropyridyloxy)] benzene

References

  1. Yan, J., and Xie, W. (2016) A brief history of the discovery of PXR and CAR as xenobiotic receptors, Acta Pharm. Sin. B, 6, 450-452, https://doi.org/10.1016/j.apsb.2016.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cai, X., Young, G. M., and Xie, W. (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update, Biochim. Biophys. Acta Mol. Basis Dis., 1867, 166101, https://doi.org/10.1016/j.bbadis.2021.166101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blanco-Bose, W. E., Murphy, M. J., Ehninger, A., Offner, S., Dubey, C., Huang, W., Moore, D. D., and Trumpp, A. (2008) C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia, Hepatology, 48, 1302-1311, https://doi.org/10.1002/hep.22475.

    Article  CAS  PubMed  Google Scholar 

  4. Tschuor, C., Kachaylo, E., Limani, P., Raptis, D. A., Linecker, M., Tian, Y., Herrmann, U., Grabliauskaite, K., Weber, A., Columbano, A., Graf, R., Humar, B., and Clavien, P. A. (2016) Constitutive androstane receptor (Car)-driven regeneration protects liver from failure following tissue loss, J. Hepatol., 65, 66-74, https://doi.org/10.1016/j.jhep.2016.02.040.

    Article  CAS  PubMed  Google Scholar 

  5. Lodato, N. J., Melia, T., Rampersaud, A., and Waxman, D. J. (2017) Sex-differential responses of tumor promotion-associated genes and dysregulation of novel long noncoding RNAs in constitutive androstane receptor-activated mouse liver, Toxicol. Sci., 159, 25-41, https://doi.org/10.1093/toxsci/kfx114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skoda, J., Dohnalova, K., Chalupsky, K., Stahl, A., Templin, M., Maixnerova, J., Micuda, S., Grøntved, L., Braeuning, A., and Pavek, P. (2022) Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice, Biochem. Pharmacol., 197, 114905, https://doi.org/10.1016/j.bcp.2021.114905.

    Article  CAS  PubMed  Google Scholar 

  7. Solhi, R., Lotfinia, M., Gramignoli, R., Najimi, M., and Vosough, M. (2021) Metabolic hallmarks of liver regeneration, Trends Endocrinol. Metab., 32, 731-745, https://doi.org/10.1016/j.tem.2021.06.002.

    Article  CAS  PubMed  Google Scholar 

  8. Cardiff, R. D., Miller, C. H., and Munn, R. J. (2014) Manual hematoxylin and eosin staining of mouse tissue sections, Cold Spring Harb. Protoc., 2014, 655-658, https://doi.org/10.1101/pdb.prot073411.

    Article  PubMed  Google Scholar 

  9. Graefe, C., Eichhorn, L., Wurst, P., Kleiner, J., Heine, A., Panetas, I., Abdulla, Z., Hoeft, A., Frede, S., Kurts, C., Endl, E., and Weisheit, C. K. (2019) Optimized Ki-67 staining in murine cells: a tool to determine cell proliferation, Mol. Biol. Rep., 46, 4631-4643, https://doi.org/10.1007/s11033-019-04851-2.

    Article  CAS  PubMed  Google Scholar 

  10. Mazin, M. E., Yarushkin, A. A., Pustylnyak, Y. A., Prokopyeva, E. A., and Pustylnyak, V. O. (2022) Promotion of NR1I3-mediated liver growth is accompanied by STAT3 activation, Mol. Biol. Rep., 49, 4089-4093, https://doi.org/10.1007/s11033-022-07340-1.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, M., Breitkopf, S. B., Yang, X., and Asara, J. M. (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue, Nat. Protoc., 7, 872-881, https://doi.org/10.1038/nprot.2012.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogachev, A. D., Alemasov, N. A., Ivanisenko, V. A., Ivanisenko, N. V., Gaisler, E. V., Oleshko, O. S., Cheresiz, S. V., Mishinov, S. V., Stupak, V. V., and Pokrovsky, A. G. (2021) Correlation of metabolic profiles of plasma and cerebrospinal fluid of high-grade glioma patients, Metabolites, 11, 133, https://doi.org/10.3390/metabo11030133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kazantseva, Y. A., Pustylnyak, Y. A., and Pustylnyak, V. O. (2016) Role of nuclear constitutive androstane receptor in regulation of hepatocyte proliferation and hepatocarcinogenesis, Biochemistry (Moscow), 81, 338-347, https://doi.org/10.1134/S0006297916040040.

    Article  CAS  PubMed  Google Scholar 

  14. Huber, K., Mestres-Arenas, A., Fajas, L., and Leal-Esteban, L. C. (2021) The multifaceted role of cell cycle regulators in the coordination of growth and metabolism, FEBS J., 288, 3813-3833, https://doi.org/10.1111/febs.15586.

    Article  CAS  PubMed  Google Scholar 

  15. Locasale, J. W., and Cantley, L. C. (2011) Metabolic flux and the regulation of mammalian cell growth, Cell Metab., 14, 443-451, https://doi.org/10.1016/j.cmet.2011.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lunt, S. Y., and Vander Heiden, M. G. (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation, Annu. Rev. Cell Dev. Biol., 27, 441-464, https://doi.org/10.1146/annurev-cellbio-092910-154237.

    Article  CAS  PubMed  Google Scholar 

  17. Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., and Tong, X. (2020) The role of the pentose phosphate pathway in diabetes and cancer, Front. Endocrinol. (Lausanne), 11, 365, https://doi.org/10.3389/fendo.2020.00365.

    Article  PubMed  Google Scholar 

  18. Jin, L., and Zhou, Y. (2019) Crucial role of the pentose phosphate pathway in malignant tumors, Oncol. Lett., 17, 4213-4221, https://doi.org/10.3892/ol.2019.10112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Z., Li, W., Geng, L., Sun, L., Wang, Q., Yu, Y., Yan, P., Liang, C., Ren, J., Song, M., Zhao, Q., Lei, J., Cai, Y., Li, J., Yan, K., Wu, Z., Chu, Q., Li, J., Wang, S., Li, C., Han, J. J., Hernandez-Benitez, R., Shyh-Chang, N., Belmonte, J. C. I., Zhang, W., Qu, J., and Liu, G. H. (2022) Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor, Cell Discov., 8, 6, https://doi.org/10.1038/s41421-021-00361-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doi, J., Fujimoto, Y., Teratani, T., Kasahara, N., Maeda, M., Tsuruyama, T., Iida, T., Yagi, S., and Uemoto, S. (2019) Bolus administration of polyamines boosts effects on hepatic ischemia-reperfusion injury and regeneration in rats, Eur. Surg. Res., 60, 63-73, https://doi.org/10.1159/000497434.

    Article  CAS  PubMed  Google Scholar 

  21. Mandal, S., Mandal, A., Johansson, H. E., Orjalo, A. V., and Park, M. H. (2013) Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells, Proc. Natl. Acad. Sci. USA, 110, 2169-2174, https://doi.org/10.1073/pnas.1219002110.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alhonen, L., Räsänen, T. L., Sinervirta, R., Parkkinen, J. J., Korhonen, V. P., Pietilä, M., and Jänne, J. (2002) Polyamines are required for the initiation of rat liver regeneration, Biochem. J., 362, 149-153, https://doi.org/10.1042/0264-6021:3620149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chattopadhyay, M. K., Park, M. H., and Tabor, H. (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine, Proc. Natl. Acad. Sci. USA, 105, 6554-6559, https://doi.org/10.1073/pnas.0710970105.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lempiäinen, H., Müller, A., Brasa, S., Teo, S. S., Roloff, T. C., Morawiec, L., Zamurovic, N., Vicart, A., Funhoff, E., Couttet, P., Schübeler, D., Grenet, O., Marlowe, J., Moggs, J., and Terranova, R. (2011) Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice, PLoS One, 6, e18216, https://doi.org/10.1371/journal.pone.0018216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rampersaud, A., Lodato, N. J., Shin, A., and Waxman, D. J. (2019) Widespread epigenetic changes to the enhancer landscape of mouse liver induced by a specific xenobiotic agonist ligand of the nuclear receptor CAR, Toxicol. Sci., 171, 315-338, https://doi.org/10.1093/toxsci/kfz148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui, J. Y., and Klaassen, C. D. (2016) RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome, Biochim. Biophys. Acta, 1859, 1198-1217, https://doi.org/10.1016/j.bbagrm.2016.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was performed using equipment of the “Proteomic Analysis” Center for Collective Use supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-691).

Funding

The work was financially supported by the Russian Science Foundation (project no. 18-15-00021).

Author information

Authors and Affiliations

Authors

Contributions

V.O.P., L.F.G. – concept and supervision of the work; M.E.M., A.M.P., A.A.Ya., Yu.A.P., A.D.R., E.A.P. – experimental work and statistical processing of the results; M.E.M., A.A.Ya., V.O.P., L.F.G. – discussion of the research results; M.E.M. – writing the manuscript; V.O.P. – editing the manuscript.

Corresponding author

Correspondence to Vladimir O. Pustylnyak.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All experiments with animals were approved and performed as recommended by the Committee of Bioethics of the Federal Research Center for Fundamental and Translational Medicine (protocol no. 23-17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazin, M.E., Perevalova, A.M., Yarushkin, A.A. et al. Constitutive Androstane Receptor Agonist Initiates Metabolic Activity Required for Hepatocyte Proliferation. Biochemistry Moscow 88, 1061–1069 (2023). https://doi.org/10.1134/S0006297923080023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923080023

Keywords

Navigation