Skip to main content

Advertisement

Log in

Recombinant Human Cyclophilin A in Combination with Adoptive T-cell Therapy Improves the Efficacy of Cancer Immunotherapy in Experimental Models in vivo

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Adoptive T-cell therapy (ACT) is successfully applied in cancer treatment; however, its efficiency can be limited by a low viability, short persistence time, and loss of functional activity of T-cells after adoptive transfer. The search for novel immunomodulators that can improve the viability, expansion, and functions of T-cells after their infusion with the minimal side effects could contribute to the development of more efficient and safe ACT strategies. Recombinant human cyclophilin A (rhCypA) is of particular interest in this respect, as it exhibits pleiotropic immunomodulatory activity and stimulates both innate and adaptive anti-tumor immunity. Here, we evaluated the effect of rhCypA on the efficacy of ACT in the mouse EL4 lymphoma model. Lymphocytes from transgenic 1D1a mice with an inborn pool of EL4-specific T-cells were used as a source of tumor-specific T-cells for ACT. In models of immunocompetent and immunodeficient transgenic mice, the course (3 days) rhCypA administration was shown to significantly stimulate EL4 rejection and prolong the overall survival of tumor-bearing mice after adoptive transfer of lowered doses of transgenic 1D1a cells. Our studies showed that rhCypA significantly improved the efficacy of ACT by enhancing the effector functions of tumor-specific cytotoxic T-cells. These findings open up the prospects for the development of innovative strategies of adoptive T-cell immunotherapy for cancer using rhCypA as an alternative to existing cytokine therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

Ab:

antibody

ACT:

adoptive cell therapy

CTL:

cytotoxic T-lymphocyte

CypA:

cyclophilin A

Kb:

major histocompatibility complex H2-Kb

rhCypA:

recombinant human CypA

TCR:

T-cell receptor

References

  1. Met, Ö., Jensen, K., Chamberlain, C., Donia, M., and Svane, I. (2019) Principles of adoptive T cell therapy in cancer, Semin. Immunopathol., 41, 49-58, https://doi.org/10.1007/s00281-018-0703-z.

    Article  PubMed  Google Scholar 

  2. Zhang, H., and Chen, J. (2018) Current status and future directions of cancer immunotherapy, J. Cancer., 9, 1773-1781, https://doi.org/10.7150/jca.24577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Q., Jiang, Y., Xiang, S., Kaboli, P., Shen, J., Zhao, Y., Wu, X., Du, F., Li, M., Cho, C., Li, J., Wen, Q., Liu, T., Yi, T., and Xiao, Z. (2021) Engineered TCR-T cell immunotherapy in anticancer precision medicine: pros and cons, Front. Immunol., 12, 658753, https://doi.org/10.3389/fimmu.2021.658753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. June, C., O’Connor, R., Kawalekar, O., Ghassemi, S., and Milone, M. (2018) CAR T cell immunotherapy for human cancer, Science, 359, 1361-1365, https://doi.org/10.1126/science.aar6711.

    Article  CAS  PubMed  Google Scholar 

  5. Mescher, M., Popescu, F., Gerner, M., Hammerbeck, C., and Curtsinger, J. (2007) Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors, Semin. Cancer Biol., 17, 299-308, https://doi.org/10.1016/j.semcancer.2007.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. William, Y., Ho, C., and Greenberg, P. (2002) Adoptive therapy with CD8+ T cells: it may get by with a little help from its friends, J. Clin. Invest., 110, 1415-1417, https://doi.org/10.1172/JCI17214.

    Article  Google Scholar 

  7. Srivastava, S., and Riddell, S. (2018) Chimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacy, J. Immunol., 200, 459-468, https://doi.org/10.4049/jimmunol.1701155.

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto, T., Lee, P., Vodnala, S., Gurusamy, D., Kishton, R., Yu, Z., Eidizadeh, A., Eil, R., Fioravanti, J., Gattinoni, L., Kochenderfer, J., Fry, T., Aksoy, B., Hammerbacher, J., Cruz, A., Siegel, R., Restifo, N., and Klebanoff, C. (2019) T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy, J. Clin. Invest., 129, 1551-1565, https://doi.org/10.1172/JCI121491.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chandran, S., Somerville, R., Yang, J., Sherry, R., Klebanoff, C., Goff, S., Wunderlich, J., Danforth, D., Zlott, D., Paria, B., Sabesan, A., Srivastava, A., Xi, L., Pham, T., Raffeld, M., White, D., Toomey, M., Rosenberg, S., and Kammula, U. (2017) Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study, Lancet Oncol., 18, 792-802, https://doi.org/10.1016/S1470-2045(17)30251-6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Veatch, J., Lee, S., Fitzgibbon, M., Chow, I., Jesernig, B., Schmitt, T., Kong, Y., Kargl, J., Houghton, A., Thompson, J., McIntosh, M., Kwok, W., and Riddell, S. (2018) Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma, J. Clin. Invest., 128, 1563-1568, https://doi.org/10.1172/JCI98689.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Berraondo, P., Sanmamed, M., Ochoa, M., Etxeberria, I., Aznar, M., Pérez-Gracia, J., Rodríguez-Ruiz, M., Ponz-Sarvise, M., Castañón, E., and Melero, I. (2019) Cytokines in clinical cancer immunotherapy, Br. J. Cancer, 120, 6-15, https://doi.org/10.1038/s41416-018-0328-y.

    Article  CAS  PubMed  Google Scholar 

  12. Choudhry, H., Helmi, N., Abdulaal, W., Zeyadi, M., Zamzami, M., Wu, W., Mahmoud, M., Warsi, M., Rasool, M., and Jamal, M. (2018) Prospects of IL-2 in cancer immunotherapy, Biomed. Res. Int., 2018, 9056173, https://doi.org/10.1155/2018/9056173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenberg, S., Yang, J., White, D., and Steinberg, S. (1998) Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response, Ann. Surg., 228, 307-319, https://doi.org/10.1097/00000658-199809000-00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen, L., Saibil, S., Sotov, V., Le, M., Khoja, L., Ghazarian, D., Bonilla, L., Majeed, H., Hogg, D., Joshua, A., Crump, M., Franke, N., Spreafico, A., Hansen, A., Al-Habeeb, A., Leong, W., Easson, A., Reedijk, M., Goldstein, D., McCready, D., Yasufuku, K., Waddell, T., Cypel, M., Pierre, A., Zhang, B., Boross-Harmer, S., Cipollone, J., Nelles, M., Scheid, E., Fyrsta, M., Lo, C., Nie, J., Yam, J., Yen, P., Gray, D., Motta, V., Elford, A., DeLuca, S., Wang, L., Effendi, S., Ellenchery, R., Hirano, N., Ohashi, P., and Butler, M. (2019) Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2, Cancer Immunol. Immunother., 68, 773-785, https://doi.org/10.1007/s00262-019-02307-x.

    Article  CAS  PubMed  Google Scholar 

  15. Kalinina, A., Silaeva, Yu., Kazansky, D., and Khromykh, L. (2019) The role of recombinant human Cyclophilin A in the antitumor immune response, Acta Naturae, 11, 63-67, https://doi.org/10.32607/20758251-2019-11-2-63-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nigro, P., Pompilio, G., and Capogrossi, M. (2013) Cyclophilin A: a key player for human disease, Cell Death Dis., 4, e888, https://doi.org/10.1038/cddis.2013.410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khromykh, L., Kulikova, N., Anfalova, T., Muranova, T., Abramov, V., Vasiliev, A., Khlebnikov, V., and Kazansky, D. (2007) Cyclophilin A produced by thymocytes regulates the migration of murine bone marrow cells, Cell Immunol., 249, 46-53, https://doi.org/10.1016/j.cellimm.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  18. Xu, Q., Leiva, M., Fischkoff, S., Handschumacher, R., and Lyttle, C. (1992) Leukocyte chemotactic activity of cyclophilin, J. Biol. Chem., 267, 11968-11971.

    Article  CAS  PubMed  Google Scholar 

  19. Dawar, F., Xiong, Y., Khattak, M., Li, J., Lin, L., Mei, J. (2017) Potential role of cyclophilin A in regulating cytokine secretion, J. Leukoc. Biol., 102, 989-992, https://doi.org/10.1189/jlb.3RU0317-090RR.

    Article  PubMed  Google Scholar 

  20. Zamkova, M., Kalinina, A., Silaeva, Y., Persiyantseva, N., Bruter, A., Deikin, A., Khromykh, L., and Kazansky, D. (2019) Dominant role of the α-chain in rejection of tumor cells bearing a specific alloantigen in TCRα transgenic mice and in in vitro experiments, Oncotarget, 10, 4808-4821, https://doi.org/10.18632/oncotarget.27093.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Silaeva, Y., Kalinina, A., Vagida, M., Khromykh, L., Deikin, A., Ermolkevich, T., Sadchikova, E., Goldman, I., and Kazansky, D. (2013) Decrease in pool of T lymphocytes with surface phenotypes of effector and central memory cells under influence of TCR transgenic β-chain expression, Biochemistry (Moscow), 78, 549-559, https://doi.org/10.1134/S0006297913050143.

    Article  CAS  PubMed  Google Scholar 

  22. Kalinina, A., Kolesnikov, A., Kozyr, A., Kulikova, N., Zamkova, M., Kazansky, D., and Khromykh, L. (2022) Preparative production and purification of recombinant human Cyclophilin A, Biochemistry (Moscow), 87, 259-268, https://doi.org/10.1134/S0006297922030063.

    Article  CAS  PubMed  Google Scholar 

  23. Khromykh, L. M., Kalinina, A. A., Kozyr, A. V., Kolesnikov, A. V., Silaeva, Yu. Yu., and Kazansky, D. B. Patent No. 2603283. Russian Federation. 2015.

  24. Silaeva, Y., Grinenko, T., Vagida, M., Kalinina, A., Khromykh, L., and Kazansky, D. (2014) Immune selection of tumor cells in TCR β-chain transgenic mice, J . Immunotoxicol., 11, 393-399, https://doi.org/10.3109/1547691X.2013.861548.

    Article  CAS  PubMed  Google Scholar 

  25. Kalinina, A., Zamkova, M., Antoshina, E., Trukhanova, L., Gorkova, T., Kazansky, D., and Khromykh, L. (2019) Analyses of the toxic properties of recombinant human Cyclophilin A in mice, J. Immunotoxicol., 16, 182-190, https://doi.org/10.1080/1547691X.2019.1665597.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-75-00004; https://rscf.ru/en/project/22-75-00004/).

Author information

Authors and Affiliations

Authors

Contributions

A.A.K., L.M.K., D.B.K. – conceptualization; L.M.K., D.B.K. – supervision and data curation; A.A.K. – in vivo and ex vivo experiments; A.A.K., L.M.K., D.B.K. – discussion of results; A.A.K. – writing of the original draft; L.M.K., D.B.K., A.A.K. – reviewing and editing; A.A.K. – funding acquisition. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Anastasiia A. Kalinina.

Ethics declarations

The authors declare no conflicts of interest. This study was carried out in compliance with all applicable international, national, and institutional guidelines for the care and use of laboratory animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, A.A., Kazansky, D.B. & Khromykh, L.M. Recombinant Human Cyclophilin A in Combination with Adoptive T-cell Therapy Improves the Efficacy of Cancer Immunotherapy in Experimental Models in vivo. Biochemistry Moscow 88, 590–599 (2023). https://doi.org/10.1134/S0006297923050024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923050024

Keywords

Navigation