Skip to main content
Log in

Activation of Embryonic Gene Transcription in Neural Precursor Cells Derived from the Induced Pluripotent Stem Cells of the Patients with Parkinson’s Disease

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the world. Despite numerous studies, the causes of this pathology remain completely unknown. This is, among other things, due to the difficulty of obtaining biological material for analysis. Neural cell cultures derived from the induced pluripotent stem cells (IPSCs) provide a great potential for studying molecular events underlying the pathogenesis of PD. This paper presents the results of bioinformatic analysis of the data obtained using RNA-seq technology in the study of neural precursors (NP) derived from IPSCs of the healthy donors and patients with PD carrying various mutations that are commonly associated with familial PD. This analysis showed that the level of transcription of multiple genes actively expressed in the nervous system at the embryonic stage of development was significantly increased in the NP cells obtained from the patients with PD, unlike in the case of healthy donors. Bioinformatic data have been, in general, confirmed using real-time PCR. The obtained data suggest that one of the causes of PD may be the shift of the gene expression pattern in neuronal cells towards embryonic gene expression pattern (termed dematuration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

DA neurons:

dopaminergic neurons

DEGs:

differentially expressed genes

FDR:

false discovery rate

HD:

healthy donor

IPSC:

induced pluripotent stem cells

NP:

neural precursors

PD:

Parkinson’s disease

References

  1. De Lau, L. M., and Breteler, M. M. B. (2006) Epidemiology of Parkinson’s disease, Lancet Neurol., 5, 525-535, https://doi.org/10.1016/S1474-4422(06)70471-9.

    Article  PubMed  Google Scholar 

  2. Okano, H., and Yamanaka, S. (2014) iPS cell technologies: significance and applications to CNS regeneration and disease, Mol. Brain, 7, 22, https://doi.org/10.1186/1756-6606-7-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Day, J. O., and Mullin, S. (2021) The genetics of Parkinson’s disease and implications for clinical practice, Genes (Basel), 12, 1006, https://doi.org/10.3390/genes12071006.

    Article  CAS  PubMed  Google Scholar 

  4. Rathore, A. S., Birla, H., Singh, S. S., Zahra, W., Dilnashin, H., Singh, R., Keshri, P. K., and Singh, S. P. (2021) Epigenetic modulation in Parkinson’s disease and potential treatment therapies, Neurochem. Res., 46, 1618-1626, https://doi.org/10.1007/s11064-021-03334-w.

    Article  CAS  PubMed  Google Scholar 

  5. Rouaud, T., Corbillé, A.-G., Leclair-Visonneau, L., de Lataillade, A. G., Lionnet, A., Preterre, C., Damier, P., and Derkinderen, P. (2021) Pathophysiology of Parkinson’s disease: mitochondria, alpha-synuclein and much more, Rev. Neurol. (Paris), 177, 260-271, https://doi.org/10.1016/j.neurol.2020.07.016.

    Article  CAS  PubMed  Google Scholar 

  6. Novosadova, E. V., and Grivennikov, I. A. (2014) Induced pluripotent stem cells: from derivation to application in biochemical and biomedical research, Biochemistry (Moscow), 79, 1425-1441, https://doi.org/10.1134/S000629791413001X.

    Article  CAS  PubMed  Google Scholar 

  7. Novosadova, E. D., Nekrasov, E. D., Chestkov, I. V., Surdina, A. V., Vasina, E. M., Bogomazova, A. N., Manuilova, E. S., Arsen’eva, E. L., Simonova, V. V., Konovalova, E. V., Fedotova, E. Yu., Abramicheva, N. Yu., Khaspekov, L. G., Grivennikov, I. A., Tarantul, V. Z., Kiselev, S. L., and Illarioshkin, S. N. (2016) A platform for studying molecular and cellular mechanisms of Parkinson’s disease based on human induced pluripotent stem cells [in Russian], Sovrem. Tehnol. Med., 8, 157-166, https://doi.org/10.17691/stm2016.8.4.20.

    Article  Google Scholar 

  8. Fedoseeva, V. B., Novosadova, E. V., Novosadova, V. V., Nenasheva, V. V., Grivennikov, I. A., and Tarantul, V. Z. (2022) The level of transcription of HOX genes increased in neural precursors derived from iPSC from patients with Parkinson’s disease, in Smart and Innovative Farming for Sustainable Agriculture and Food Systems, Springer Nature.

  9. Novosadova, E., Anufrieva, K., Kazantseva, E., Arsenyeva, E., Fedoseyeva, V., Stepanenko, E., Poberezhniy, D., Illarioshkin, S., Novosadova, L., Gerasimova, T., Nenasheva, V., Grivennikov, I., Lagarkova, M., and Tarantul, V. (2022) Transcriptome datasets of neural progenitors and neurons differentiated from induced pluripotent stem cells of healthy donors and Parkinson’s disease patients with mutations in the PARK2 gene, Data Brief, 41, 107958, https://doi.org/10.1016/j.dib.2022.107958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Avazzadeh, S., Baena, J. M., Keighron, C., Feller-Sanchez, Y., and Quinlan, L. R. (2021) Modelling Parkinson’s disease: iPSCs towards better understanding of human pathology, Brain Sci., 11, 373, https://doi.org/10.3390/brainsci11030373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novosadova, E. V., Nenasheva, V. V., Makarova, I. V., Dolotov, O. V., Inozemtseva, L. S., Arsenyeva, E. L., Chernyshenko, S. V., Sultanov, R. I., Illarioshkin, S. N., Grivennikov, I. A., and Tarantul, V. Z. (2020) Parkinson’s disease-associated changes in the expression of neurotrophic factors and their receptors upon neuronal differentiation of human induced pluripotent stem cells, J. Mol. Neurosci., 70, 514-521, https://doi.org/10.1007/s12031-019-01450-5.

    Article  CAS  PubMed  Google Scholar 

  12. Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010) EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26, 139-140, https://doi.org/10.1093/bioinformatics/btp616.

    Article  CAS  PubMed  Google Scholar 

  13. Livak, K., and Schmittgen, T. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  14. Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Sharipov, R. N., Fedorova, A. D., Rumynskiy, E. I., Medvedeva, Y. A., Magana-Mora, A., Bajic, V. B., Papatsenko, D. A., Kolpakov, F. A., and Makeev, V. J. (2018) HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis, Nucleic Acids Res., 46(D1), D252-D259, https://doi.org/10.1093/nar/gkx1106.

    Article  CAS  Google Scholar 

  15. Wang, W. D., Melville, D. B., Montero-Balaguer, M., Hatzopoulos, A. K., and Knapik, E. W. (2011) Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population, Dev. Biol., 360, 173-185, https://doi.org/10.1016/j.ydbio.2011.09.0194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hulme, A. J., Maksour, S., St-Clair Glover, M., Miellet, S., and Dottori, M. (2022) Making neurons, made easy: the use of neurogenin-2 in neuronal differentiation, Stem Cell Rep., 17, 14-34, https://doi.org/10.1016/j.stemcr.2021.11.015.

    Article  CAS  Google Scholar 

  17. Ang, S.-L. (2009) Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons, Adv. Exp. Med. Biol., 651, 58-65, https://doi.org/10.1007/978-1-4419-0322-8_5.

    Article  CAS  PubMed  Google Scholar 

  18. Blesa, J., and Przedborski, S. (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability, Front. Neuroanat., 8, 155-167, https://doi.org/10.3389/fnana.2014.00155.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663-676, https://doi.org/10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  20. Marchionini, M., Lehrmann, E., Chu, Y., He, B., Sorwell, C. E., Beckerc, K. G., Freed, W. J., Kordower, J. H., and Collier, T. J. (2007) Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson’s disease, Brain Res., 1147, 77-88, https://doi.org/10.1016/j.brainres.2007.02.028.

    Article  CAS  PubMed  Google Scholar 

  21. Zagare, A., Barmpa, K., Smajic, S., Smits, L. M., Grzyb, K., Grünewald, A., Skupin, A., Nickels, S. L., and Schwamborn, J. C. (2022) Midbrain organoids mimic early embryonic neurodevelopment and recapitulate LRRK2-p.Gly2019Ser-associated gene expression, Am. J. Hum. Genet., 109, 311-327, https://doi.org/10.1016/j.ajhg.2021.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y., and Wang, Z. (2020) An integrated network analysis of mRNA and gene expression profiles in Parkinson’s disease, Med. Sci. Monit., 26, 920846, https://doi.org/10.12659/msm.920846.

    Article  CAS  Google Scholar 

  23. Bansod, S., Kageyama, R., and Ohtsuka, T. (2017) HES5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development, Development, 144, 3156-3167, https://doi.org/10.1242/dev.147256.

    Article  CAS  PubMed  Google Scholar 

  24. Chapman, G., Sparrow, D. B., Kremmer, E., and Dunwoodie, S. L. (2011) Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis, Hum. Mol. Genet., 20, 905-916, https://doi.org/10.1093/hmg/ddq529.

    Article  CAS  PubMed  Google Scholar 

  25. Augustyn, A., Borromeo, M., Wang, T., Fujimoto, J., Shao, C., Dospoy, P. D., Lee, V., Tan, C., Sullivan, J. P., Larsen, J. E., Girard, L., Behrens, C., Wistuba, I. I., Xie, Y., Cobb, M. H., Gazdar, A. F., Johnson, J. E., and Minna, J. D. (2014) ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers, Proc. Natl. Acad. Sci. USA, 111, 14788-14793, https://doi.org/10.1073/pnas.1410419111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henke, R. M., Meredith, D. M., Borromeo, M. D., Savage, T. K., and Johnson, J. E. (2009) Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube, Dev. Biol., 328, 529-540, https://doi.org/10.1016/j.ydbio.2009.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kageyama, R., Shimojo, H., and Ohtsuka, T. (2019) Dynamic control of neural stem cells by bHLH factors, Neurosci. Res., 138, 12-18, https://doi.org/10.1016/j.neures.2018.09.005.

    Article  CAS  PubMed  Google Scholar 

  28. Ide, M., Yamada, K., Toyota, T., Iwayama, Y., Ishitsuka, Y., Minabe, Y., Nakamura, K., Hattori, N., Asada, T., Mizuno, Y., Mori, N., and Yoshikawa, T. (2005) Genetic association analyses of PHOX2B and ASCL1 in neuropsychiatric disorders: evidence for association of ASCL1 with Parkinson’s disease, Hum. Genet., 117, 520-527, https://doi.org/10.1007/s00439-005-1342-8.

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira, M. A. P., Balling, R., Smidt, M. P., and Fleming, R. M. T. (2017) Embryonic development of selectively vulnerable neurons in Parkinson’s disease, NPJ Parkinson Dis., 3, 21, https://doi.org/10.1038/s41531-017-0022-4.

    Article  Google Scholar 

  30. Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova, T. D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli, G., Gainetdinov, R. R., Gustincich, S., Dityatev, A., and Broccoli, V. (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts, Nature, 476, 224-227, https://doi.org/10.1038/nature10284.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, C., Shi, X., Allen, A., Baez-Nieto, D., Nikish, A., Sanjana, N. E., and Pan, J. Q. (2019) Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons, FASEB J., 33, 5287-5299, https://doi.org/10.1096/fj.201801110RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han, S., Dennis, D. F., Balakrishnan, A., Dixit, R., Britz, O., Zinyk, D., Touahri, Y., Olender, T., Brand, M., Guillemot, F., Kurrasch, D., and Schuurmans, C. (2018) A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis, Development, 145, dev157719, https://doi.org/10.1242/dev.157719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kele, J., Simplicio, N., Ferri, A. L. M., Mira, H., Guillemot, F., Arenas, E., and Ang, S.-L. (2006) Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons, Development, 133, 495-505, https://doi.org/10.1242/dev.02223.

    Article  CAS  PubMed  Google Scholar 

  34. Dasen, J. S., Tice, B. C., Brenner-Morton, S., and Jessell, T. M. (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity, Cell, 123, 477-491, https://doi.org/10.1016/j.cell.2005.09.009.

    Article  CAS  PubMed  Google Scholar 

  35. Schmid, T., Krüger, M., and Braun, T. (2007) NSCL-1 and -2 control the formation of precerebellar nuclei by orchestrating the migration of neuronal precursor cells, Neurochemistry, 102, 2061-2072, https://doi.org/10.1111/j.1471-4159.2007.04694.x.

    Article  CAS  Google Scholar 

  36. Kratochwil, C. F., Maheshwari, U., and Rijli, F. M. (2017) The long journey of pontine nuclei neurons: from rhombic lip to cortico-ponto-cerebellar circuitry, Front. Neurol. Circuits, 11, 33, https://doi.org/10.3389/fncir.2017.00033.

    Article  CAS  Google Scholar 

  37. Krüger, M., Ruschke, K., and Braun, T. (2004) NSCL-1 and NSCL-2 synergistically determine the fate of GnRH-1 neurons and control necdin gene expression, EMBO J., 23, 4353-4364, https://doi.org/10.1038/sj.emboj.7600431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Byun, J. S., Oh, M., Lee, S., Gil, J.-E., Mo, Y., Ku, B., Kim, W. K., Oh, K. J., Lee, E. W., Bae, K. H., Lee, S. C., and Han, B. S. (2020) The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene, J. Biol. Chem., 295, 13677-13690, https://doi.org/10.1074/jbc.RA120.013352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agoston, Z., Li, N., Haslinger, A., Wizenmann, A., and Schulte, D. (2012) Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development, BMC Dev. Biol., 12, 10, https://doi.org/10.1186/1471-213X-12-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mansouri, A. (1998) The role of Pax3 and Pax7 in development and cancer, Crit. Rev. Oncog., 9, 141-149, https://doi.org/10.1615/critrevoncog.v9.i2.40.

    Article  CAS  PubMed  Google Scholar 

  41. Agoston, Z., and Schulte, D. (2009) Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer, Development, 136, 3311-3322, https://doi.org/10.1242/dev.037770.

    Article  CAS  PubMed  Google Scholar 

  42. Xu, M., Li, Y., Du, J., Lin, H., Cao, S., Mao, Z., Wu, R., Liu, M., Liu, Y., and Yin, Q. (2018) PAX3 promotes cell migration and CXCR4 gene expression in neural crest cells, J. Mol. Neurosci., 64, 1-8, https://doi.org/10.1007/s12031-017-0995-9.

    Article  CAS  PubMed  Google Scholar 

  43. Green, Y. S., and Vetter, M. L. (2021) EBF factors drive expression of multiple classes of target genes governing neuronal development, Neural. Dev., 6, 19, https://doi.org/10.1186/1749-8104-6-19.

    Article  CAS  Google Scholar 

  44. Chandrasekaran, S., and Bonchev, D. (2013) A network view on Parkinson’s disease, Comput. Struct. Biotechnol., 7, 201304004, https://doi.org/10.5936/csbj.201304004.

    Article  Google Scholar 

  45. Cruz-Monteagudo, M., Borges, F., Paz-Y-Miño, C., Cordeiro, M. N. D. S., Rebelo, I., Perez-Castillo, Y., Helguera, A. M., Sánchez-Rodríguez, A., and Tejera, E. (2016) Efficient and biologically relevant consensus strategy for Parkinson’s disease gene prioritization, BMC Med. Genomics, 9, 12, https://doi.org/10.1186/s12920-016-0173-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maden, M. (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system, Nat. Rev. Neurosci., 8, 755-765, https://doi.org/10.1038/nrn2212.

    Article  CAS  PubMed  Google Scholar 

  47. Napoli, J. L. (2012) Physiological insights into all-trans-retinoic acid biosynthesis, Biochim. Biophys. Acta, 1821, 152-167, https://doi.org/10.1016/j.bbalip.2011.05.004.

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto, M., Zhang, J., Smith, D., Hayakawa, Y., and McCaffery, P. (2003) A critical period for retinoic acid teratogenesis and loss of neurophilic migration of pontine nuclei neurons, Mech. Dev., 120, 701-709, https://doi.org/10.1016/s0925-4773(03)00047-9.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto, M., Fujinuma, M., Hirano, S., Hayakawa, Y., Clagett-Dame, M., Zhang, J., and McCaffery, P. (2005) Retinoic acid influences the development of the inferior olivary nucleus in the rodent, Dev. Biol., 280, 421-433, https://doi.org/10.1016/j.ydbio.2005.02.007.

    Article  CAS  PubMed  Google Scholar 

  50. Bouillet, P., Chazaud, C., Oulad-Abdelghani, M., Dollé, P., and Chambon, P. (1995) Sequence and expression pattern of the Stra7 (Gbx-2) homeobox-containing gene induced by retinoic acid in P19 embryonal carcinoma cells, Dev. Dyn., 204, 372-382, https://doi.org/10.1002/aja.1002040404.

    Article  CAS  PubMed  Google Scholar 

  51. Wassarman, K. M., Lewandoski, M., Campbell, K., Joyner, A. L., Rubenstein, J. L., Martinez, S., and Martin, G. R. (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function, Development, 124, 2923-2934, https://doi.org/10.1242/dev.124.15.2923.

    Article  CAS  PubMed  Google Scholar 

  52. Millet, S., Campbell, K., Epstein, D. J., Losos, K., Harris, E., and Joyner, A. (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer, Nature, 401, 161-164, https://doi.org/10.1038/43664.

    Article  CAS  PubMed  Google Scholar 

  53. Mesman, S., and Smidt, M. P. (2020) Acquisition of the midbrain dopaminergic neuronal identity, Int. J. Mol. Sci., 21, 4638, https://doi.org/10.3390/ijms21134638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prakash, N., Brodski, C., Naserke, T., Puelles, E., Gogoi, R., Hall, A., Panhuysen, M., Echevarria, D., Sussel, L., Weisenhorn, D. M., Martinez, S., Arenas, E., Simeone, A., and Wurst, W. (2006) A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo, Development, 133, 89-98, https://doi.org/10.1242/dev.02181.

    Article  CAS  PubMed  Google Scholar 

  55. Yang, J., Brown, A., Ellisor, D., Paul, E., Hagan, N., and Zervas, M. (2013) Dynamic temporal requirement of Wnt1 in midbrain dopamine neuron development, Development, 140, 1342-1352, https://doi.org/10.1242/dev.080630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arenas, E. (2014) Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson’s disease, J. Mol. Cell. Biol., 6, 42-53, https://doi.org/10.1093/jmcb/mju001.

    Article  CAS  PubMed  Google Scholar 

  57. Akane, H., Saito, F., Shiraki, A., Imatanaka, N., Akahori, Y., Itahashi, M., Wang, L., and Shibutani, M. J. (2014) Gene expression profile of brain regions reflecting aberrations in nervous system development targeting the process of neurite extension of rat offspring exposed developmentally to glycidol, Appl. Toxicol., 34, 1389-1399, https://doi.org/10.1002/jat.2971.

    Article  CAS  Google Scholar 

  58. Rawal, N., Corti, O., Sacchetti, P., Ardilla-Osorio, H., Sehat, B., Brice, A., and Arenas, E. (2009) Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling, Biochem. Biophys. Res. Commun., 388, 473-478, https://doi.org/10.1016/j.bbrc.2009.07.014.

    Article  CAS  PubMed  Google Scholar 

  59. Sancho, R. M., Law, B. M. H., and Harvey, K. (2009) Mutations in the LRRK2 Roc-COR tandem domain link Parkinson’s disease to Wnt signaling pathways, Hum. Mol. Genet., 18, 3955-3968, https://doi.org/10.1093/hmg/ddp337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berwick, D. C., and Harvey, K. (2012) LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6, Hum. Mol. Genet., 21, 4966-4979, https://doi.org/10.1093/hmg/dds342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rothstein, M., and Simoes-Costa, M. (2020) Heterodimerization of TFAP2 pioneer factors drives epigenomic remodeling during neural crest specification, Genome Res., 30, 35-48, https://doi.org/10.1101/gr.249680.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kousa, Y. A., Zhu, H., Fakhouri, W. D., Lei, Y., Kinoshita, A., Roushangar, R. R., Patel, N. K., Agopian, A. J., Yang, W., Leslie, E. J., Busch, T. D., Mansour, T. A., Li, X., Smith, A. L., Li, E. B., Sharma, D. B., Williams, T. J., Chai, Y., Amendt, B. A., Liao, E. C., Mitchell, L. E., Bassuk, A. G., Gregory, S., Ashley-Koch, A., Shaw, G. M., Finnell, R. H., and Schutte, B. C. (2019) TFAP2AIRF6GRHL genetic pathway is conserved in neurulation, Hum. Mol. Genet., 28, 1726-1737, https://doi.org/10.1093/hmg/ddz010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahn, J.-I., Lee, K.-H., Shin, D.-M., Shim, J.-W., Lee, J.-S., Chang, S.Y., Lee, Y.-S., Brownstein, M. J., Lee, S.-H., and Lee, Y.-S. (2004) Comprehensive transcriptome analysis of differentiation of embryonic stem cells into midbrain and hindbrain neurons, Dev. Biol., 265, 491-501, https://doi.org/10.1016/j.ydbio.2003.09.041.

    Article  CAS  PubMed  Google Scholar 

  64. Sim, H., Lee, J.-E., Yoo, H. M., Cho, S., Lee, H., Baek, A., Kim, J., Seo, H., Kweon, M. N., Kim, H. G., Jeon, Y. J., Son, M. Y., and Kim, J. (2020) Iroquois homeobox protein 2 identified as a potential biomarker for Parkinson’s disease, Int. J. mol. Sci., 21, 3455, https://doi.org/10.3390/ijms21103455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hagihara, H., Ohira, K., and Miyakawa, T. (2019) Transcriptomic evidence for immaturity induced by antidepressant fluoxetine in the hippocampus and prefrontal cortex, Neuropsychopharmacol. Rep., 39, 78-89, https://doi.org/10.1002/npr2.12048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hagihara, H., Murano, T., Ohira, K., Miwa, M., Nakamura, K., and Miyakawa, T. (2019) Expression of progenitor cell/immature neuron markers does not present definitive evidence for adult neurogenesis, Mol. Brain, 12, 108, https://doi.org/10.1186/s13041-019-0522-8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lehrer, S., and Rheinstein, P. H. (2021) Alzheimer’s disease and Parkinson’s disease may result from reactivation of embryologic pathways silenced at birth, Discov. Med., 31, 89-94.

    PubMed  PubMed Central  Google Scholar 

  68. Caldwell, A. B., Liu, Q., Schroth, G. P., Galasko, D. R., Yuan, S. H., Wagner, S. T., and Subramaniam, S. (2020) Dedifferentiation and neuronal repression define familial Alzheimer’s disease, Sci. Adv., 6, eaba5933, https://doi.org/10.1126/sciadv.aba5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weykopf, B., Haupt, S., Jungverdorben, J., Flitsch, L. J., Hebisch, M., Liu, G.-H., Suzuki, K., Belmonte, J. C. I., Peitz, M., Blaess, S., Till, A., and Brüstle, O. (2019) Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson’s disease, Eur. J. Neurosci., 49, 561-589, https://doi.org/10.1111/ejn.14345.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to academician S. N. Illarioshkin (Research Center of Neurology) for providing biopsy sample from the patients with PD, to professor M. A. Lagarkova (Federal Research and Clinical Center of Physical Chemical Medicine of the Federal Medical and Biological Agency of the Russian Federation, Moscow, Russia) for providing IPSC cell lines. Experiments were conducted with the equipment of the Center of Collective Use of scientific equipment (Center “Cellular and Genetic Technologies” of Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”).

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1357) (generation of cell lines) and by the Russian Science Foundation (project no. 21-15-00103) (bioinformatic analysis).

Author information

Authors and Affiliations

Authors

Contributions

All authors provided contribution to the development of concept and design of the study. E. V. Novosadova and V. V. Nenasheva prepared material for examination; E. V. Novosadova, L. V. Novosadova, V. V. Nenasheva, I. A. Grivennikov, and V. B. Fedoseyeva collected and analyzed the data. First draft of the paper was prepared by V. B. Fedoseyeva and V. Z. Tarantul. All authors approved final version of the manuscript.

Corresponding author

Correspondence to Viya B. Fedoseyeva.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors. Description of cell lines produced from human cells obtained with their consent is presented in our previous papers, where these cell lines were first introduced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseyeva, V.B., Novosadova, E.V., Nenasheva, V.V. et al. Activation of Embryonic Gene Transcription in Neural Precursor Cells Derived from the Induced Pluripotent Stem Cells of the Patients with Parkinson’s Disease. Biochemistry Moscow 88, 515–525 (2023). https://doi.org/10.1134/S0006297923040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923040077

Keywords

Navigation