Skip to main content
Log in

Brain CoA and Acetyl CoA Metabolism in Mechanisms of Neurodegeneration

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The processes of biotransformation of pantothenic acid (Pan) in the biosynthesis and hydrolysis of CoA, key role of pantothenate kinase (PANK) and CoA synthetase (CoASY) in the formation of the priority mitochondrial pool of CoA, with a high metabolic turnover of the coenzyme and limited transport of Pan across the blood-brain barrier are considered. The system of acetyl-CoA, a secondary messenger, which is the main substrate of acetylation processes including formation of N-acetyl aspartate and acetylcholine, post-translational modification of histones, predetermines protection of the neurons against degenerative signals and cholinergic neurotransmission. Biochemical mechanisms of neurodegenerative syndromes in the cases of PANK and CoASY defects, and the possibility of correcting of CoA biosynthesis in the models with knockouts of these enzymes have been described. The data of a post-mortem study of the brains from the patients with Huntington’s and Alzheimer’s diseases are presented, proving Pan deficiency in the CNS, which is especially pronounced in the pathognomonic neurostructures. In the frontal cortex of the patients with Parkinson’s disease, combined immunofluorescence of anti-CoA- and anti-tau protein was detected, reflecting CoAlation during dimerization of the tau protein and its redox sensitivity. Redox activity and antioxidant properties of the precursors of CoA biosynthesis were confirmed in vitro with synaptosomal membranes and mitochondria during modeling of aluminum neurotoxicity accompanied by the decrease in the level of CoA in CNS. The ability of CoA biosynthesis precursors to stabilize glutathione pool in neurostructures, in particular, in the hippocampus, is considered as a pathogenetic protection mechanism during exposure to neurotoxins, development of neuroinflammation and neurodegeneration, and justifies the combined use of Pan derivatives (for example, D-panthenol) and glutathione precursors (N-acetylcysteine). Taking into account the discovery of new functions of CoA (redox-dependent processes of CoAlation of proteins, possible association of oxidative stress and deficiency of Pan (CoA) in neurodegenerative pathology), it seems promising to study bioavailability and biotransformation of Pan derivatives, in particular of D-panthenol, 4′-phospho-pantetheine, its acylated derivatives, and compositions with redox pharmacological compounds, are promising for their potential use as etiopathogenetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

AcCoA:

acetyl-CoA

ACSS:

AcCoA synthase

AD:

Alzheimer’s disease

BHB:

β-hydroxybutyrate

CoASY:

CoA-synthetase

COPAN:

CoASY protein-associated neurodegeneration

dPCoA:

dephospho-CoA

GP:

globus pallidus

GPan:

homopantothenate

HD:

Huntington’s disease

NAA:

N-acetylaspartate

NAC:

N-acetylcysteine

NUDT:

nucleoside diphosphatase (Nudix)

Pan:

pantothenic acid

PANK:

pantothenate kinase

PanSH (SS):

pantetheine (pantethine)

PD:

Parkinson’s disease

PKAN:

pantothenate kinase-associated neurodegeneration

PL:

D-panthenol

PPan:

4′-phospho-pantothenic acid

PPanSH(SS):

4′-phospho pantetheine (pantethine)

VNN:

pantetheinase (vanine)

References

  1. Moiseenok, A. G. (2019) 2018 – the year of jubilees in investigating pantothenic acid and CoA [in Russian], Biochem. Mol. Biol. Coll. Proc., Minsk, 3, 87-89.

  2. Nachmansohn, D. (1959) Chemical and Molecular Basis of Nerve Activity, Academic Presss, New York and London.

  3. Decker, K. (1959) Die aktivierte Essigsaure. Das Coenzym A und seine Acylderivate in Stoffwechsel der Zelle, Stuttgart.

  4. Moiseenok, A. G. (1980) Pantothenic Acid (Vitamin’s Biochemistry and Application) [in Russian], Minsk, Nauka i Tekhnika.

  5. Leonardi, R., Zhang, Y.-M., and Rock, C. O. (2005) Coenzyme A: back in action, Progr. Lipid Res., 44, 125-153, https://doi.org/10.1016/j.plipres.2005.04.001.

    Article  CAS  Google Scholar 

  6. Naqueta, P., Kerrb, E.W., Vickersb, S. D., and Leonardi, R. (2020) Regulation of coenzyme A levels by degradation: the ‘Ins and Outs’, Progress in Lipid Res., 78, 101028, https://doi.org/10.1016/j.plipres.2020.101028.

    Article  CAS  Google Scholar 

  7. Czumaj, S., Szrok-Jurga, A., Hebanowska, J., Turyn, J., Swierczynski, T., Sleszinski, T., and Stelmanska, E. (2020) The pathophysiological role of CoA, Int. J. Mol. Sci., 21, 9057, https://doi.org/10.3390/ijms21239057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, Y., Moretti, I. F., Grzeschik, N. A., Sibon, O. C. M., and Schepers, H. (2021) Coenzyme A levels influence protein acetylation, CoAlation and 4′ phosphopantetheinylation: expanding the impact of a metabolic nexus molecule, Biochim. Biophys. Acta Mol. Cell Res., 1868, 118965, https://doi.org/10.1016/j.bbamcr.2021.118965.

    Article  CAS  PubMed  Google Scholar 

  9. Mignani, L., Gnutti, B., Zizioli, D., and Finazzi, D. (2021) Coenzyme A biochemistry: from neurodevelopment to neurodegeneration, Brain Sci., 11, 1031, https://doi.org/10.3390/brainsci11081031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dobrzyn, P. (2022) CoA in health and disease, Int. J. Mol. Sci., 23, 4371, https://doi.org/10.3390/ijms23084371.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wieland, O. (1966) Oxydo-Reductasen. Coenzym A-enzyme/Hoppe-Seyler/Thierfelder, Handbuch der Physiologisch- und Pathologisch-Chemischen Analyse, 10, Aufl., Bd. VI/B., 1-181.

  12. Abiko, Y. (1975) Metabolism of coenzyme A, Metabolic Pathway (Greenberg, D. S., ed) Academic Press, New York.

  13. Moiseenok, A. G., Gurinovich, V. A., Katkovskaya, I. N., Lukienko, E. P., and Maksimchik, Yu. Z. (2022) Coenzyme A is a modulating component in developing oxidative and metabolic stress in the CNS structures [in Russian], Kislorod i Svobodnye Radikaly, sb. mat., Grodno, GrGMU, pp. 116-118.

  14. Zhou, B., Westaway, S., Levinson, B., Johnson, M., Gitschier, J., and Hayflick, S. (2001) A novel gene (PANK2) is defective in Hallervorden–Spatz syndrome, Nat. Genet., 28, 345-349, https://doi.org/10.1038/ng572.

    Article  CAS  PubMed  Google Scholar 

  15. Dusi, S., Valletta, L., Haack, T. B., Tsuchiya, Yu., Venco, P., Pasqualato, S., Goffrini, P., Tigano, M., Demchenko, N., Wieland, T., Schwarzmayr, T., Strom, T., Invernizzi, F., Garavaglia, B., Gregory, A., Sanford, L., Hamada, J., Bettencourt, C., Houlden, H., Chiapparini, L., Zorzi, G., Kurian, M. A., Nardocci, N., Prokisch, H., Hayflick, S., Gout, I., and Tiranti, V. (2014) Exome sequence reveals mutations in CoA Synthase as a cause of neurodegeneration with brain iron accumulation, Am. J. Hum. Genet., 94, 11-22, https://doi.org/10.1016/j.ajhg.2013.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayflick, S. J. (2014) Defective pantothenate metabolism and neurodegeneration, Biochem. Soc. Trans., 42, 1063-1068, https://doi.org/10.1042/BST20140098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moiseenok, A. G., Komar, V. I., Khomich, T. I., Kanunnikova, N. P., and Slyshenkov, V. S. (2000) Pantothenic acid in maintaining thiol and immune homeostasis, Bio Factors, 11, 53-55, https://doi.org/10.1002/biof.5520110115.

    Article  CAS  Google Scholar 

  18. Slyshenkov, V., Rakovska, M., Moiseenok, A., and Wojtczak, L. (1995) Pantothenic acid and its derivatives protect Ehrlich as cites tumor cells against lipid peroxidation, Free Radic. Biol. Med., 19, 767-772, https://doi.org/10.1016/0891-5849(95)00084-b.

    Article  CAS  PubMed  Google Scholar 

  19. Gurinovich, V. A., Semenovich, D. S., Katkovskaya, I. N., Kanunnikova, N. P., and Moiseenok, A. G. (2019) Thiol-disulfide status of the CoA system in modeling of systemic inflammation and administration of redox-modulating agents [in Russian], Aktual. Voprosy Fiziol., sb. m. (Zinchuk, V. V., ed) Grodno, GrGMU, pp. 84-87.

  20. Lushchak, V. I. (2012) Glutathione homeostasis and functions: potential targets for medical interventions, J. Amino Acids, 2012, 736837, https://doi.org/10.1155/2012/736837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moiseenok, A. G. (2019) CoA biosynthesis and redox activity – mechanisms of biological and pharmacological activity of pantothenic acid derivatives [in Russian], Biochem. Mol. Biol. Coll. Proc., Minsk, 3, 91-93.

  22. Tsuchiya, Y., Peak-Chew, S. Y., Newell, C., Miller-Aidoo, S., Mangal, S., Zhyvoloup, A., Bakovic, J., Malanchuk, O., Pereira, G. C., Kotiadis, V., Szabadkai, G., Duchen, M. R., Campbell, M., Cuenza, S. R., Vidal-Puig, A., James, A. M., Murohy, M. P., Filonenko, V., Skehel, M., and Gout, I. (2017) Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells, Biochem. J., 474, 2489-2508, https://doi.org/10.1042/BCJ20170129.

    Article  CAS  PubMed  Google Scholar 

  23. Bashun, N. Z., Ragin, P. V., and Moiseenok, A. G. (2020) Non-Invasive Methods for Research of Nutritional Status [in Russian], GrGU im. Yanki Kupaly, Grodno.

  24. Moiseenok, A. G. (1998) Panthenol and Other Derivatives of Pantothenic Acid: Biochemistry, Pharmacology and Medical Applications [in Russian], mat. mezhdun. simp. NAN Belarusi, Institut biokhimii, Grodno.

  25. Prohaska, R., Sibon, O. C. M., Rudnicki, D. D., Danek, A., Hayflick, S. J., Verhaag, E. M., Vonk, J. J., Margolis, R. L., and Walker, R. H. (2012) Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration, Neurobiol. Dis., 46, 607-624, https://doi.org/10.1016/j.nbd.2012.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jackowski, S., and Rock, C. O. (1981) Regulation of coenzyme A biosynthesis, J. Bacteriol., 148, 926-932, https://doi.org/10.1128/jb.148.3.926-932.1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackowski, S. (1996) Biosynthesis of pantothenic acid and coenzyme A, in Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology (Neidhardt, F. C., Curtiss, R., Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M., and Umbarger, H. E., eds) Washington, D.C., pp. 687-694.

  28. Zhyvoloup, A., Nemazanyy, I., Panasyuk, G., Valovka, T., Fenton, T., Rebholz, H., Wang, M. L., Foxon, R., Lyzogubov, V., Usenko, V., Kyyamova, R., Gorbenko, O., Matsuka, G., Filonenko, V., and Gout, I. T. (2003) Subcellular localization and regulation of coenzyme A synthase, J. Biol. Chem., 278, 50316-50321, https://doi.org/10.1074/jbc.M307763200.

    Article  CAS  PubMed  Google Scholar 

  29. Moiseenok, A. G., Kopelevich, V. M., Sheybak, V. M., and Gurinovich, V. A. (1989) Derivatives of Pantothenic Acids. Development of New Vitamin and Pharmacotherapeutic Agents [in Russian] (Gunar, V. I., Lukienko, P. I., eds) Minsk, Nauka i Tekhnika, pp. 216.

  30. Jankowska-Kulawy, A., Klimaszewska-Łata, J., Gul-Hinc, S., Ronowska, A., and Szutowicz, A. (2022) Metabolic and cellular compartments of acetyl-CoA in the healthy and diseased brain, Int. J. Mol. Sci., 23, 10073, https://doi.org/10.3390/ijms231710073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandes, R. F., and Ellisa, J. M. (2020) Acyl-CoA synthetases as regulators of brain phospholipid acylchain diversity, Prostaglandins Leukot. Essent. Fatty Acids, 161, 102175, https://doi.org/10.1016/j.plefa.2020.102175.

    Article  CAS  Google Scholar 

  32. Orsatti, L., Orsale, M. V., Pasquale, P., Vecchi, A., Colaceci, F., Ciammaichella, A., Rossetti, I., Bonelli, F., Baumgaertel, K., Liu, K., Elbaum, D., and Monteagudo, E. (2021) Turnover rate of coenzyme A in mouse brain and liver, PLoS One, 16, e0251981, https://doi.org/10.1371/journal.pone.0251981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, H., Zhao, C., Tang, M. C., Wang, Y., Wang, S. P., Allard, P., Furtos, A., and Mitchell, G. A. (2019) In born errors of mitochondrial acyl-coenzyme a metabolism: Acyl-CoA biology meets the clinic, Mol. Genet. Metab., 128, 30-44, https://doi.org/10.1016/j.ymgme.2019.05.002.

    Article  CAS  PubMed  Google Scholar 

  34. Malanchuk, O. M., Panasyuk, G. G., Serbin, N. M., Gout, I. T., and Filonenko, V. V. (2015) Generation and characterization of monoclonal antibodies specific to Coenzyme A, Biopolym. Cell, 31, 187-192, https://doi.org/10.7124/bc.0008DF.

    Article  Google Scholar 

  35. Baković, J., Martínez, D. L., Nikolaou, S. Yu, Tossounian, M.-A., Tsuchiya, Y., Thrasivoulou, C., Filonenko, V., and Gout, I. (2021) Regulation of the CoA biosynthetic complex assembly in mammalian cells, Int. J. Mol. Sci., 22, 1131, https://doi.org/10.3390/ijms22031131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deutsch, J., Rapoport, S. I., and Purdon, A. D. (1997) Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation, Neurochem. Res., 22, 759-765, https://doi.org/10.1023/a:1022030306359.

    Article  CAS  PubMed  Google Scholar 

  37. Bielarczyk, H., and Szutowicz, A. (1989) Evidence for the regulatory function of synaptoplasmic acetyl-CoA in ACh synthesis in nerve endings, Biochem. J., 262, 337-380, https://doi.org/10.1042/bj2620377.

    Article  Google Scholar 

  38. Moiseenok, A. G., Gurinovich, V. A., Omel’yanchik, S. N., and Slyshenkov, V. S. (2004) Biosynthesis of coenzyme A as a universal mechanism of coupling of exogeneity and multiplicity of functions of pantothenic acid [in Russian], Ukr. Biokhim. Zhurn., 76, 68-81.

    CAS  Google Scholar 

  39. Spector, R., and Boose, B. (1984) Accumulation of pantothenic acid by the isolated choroid plexus and brain slices in vitro, J. Neurochem., 43, 472-478, https://doi.org/10.1111/j.1471-4159.1984.tb00923.x.

    Article  CAS  PubMed  Google Scholar 

  40. Spector, R., Sivesind, C., and Kinzenbaw, D. (1986) Pantothenic acid transport through the blood-brain barrier, J. Neurochem., 47, 966-971, https://doi.org/10.1111/j.1471-4159.1986.tb00705.x.

    Article  CAS  PubMed  Google Scholar 

  41. Moiseenok A. G., Gurinovich, V. A., Katkovskaya, I. N., Badun, G. A., and Gulyaeva, N. V. (2008) Biotransformation of Coenzyme A biosynthesis precursors in brain structures, Bull. Natl. Acad. Sci. Belarus Ser. Med. Sci., 4, 48-54.

    Google Scholar 

  42. Moiseenok, A. G., Gurinovich, V. A., Evkovich, I. N., Badun, G. A., Tyasto, Z. A., Stepanichev, M. Yu., Lazareva, N. A., Onufriev, M. V., and Gulyaeva, N. V. (2007) Synthesis of 4′-[3H]-phospho-pantothenic acid and studies of its metabolism in structures of the brain, Neurochem. J., 1, 299-304.

    Article  Google Scholar 

  43. Moiseenok, A. G., Katkovskaya, I. N., Gurinovich, V. A., Denisov, A. A., Pashkevich, S. G., and Kul’chitskiy, V. A. (2010) Absorption and biotransformation of the coenzyme A precursor D-pantethine in rat hippocampus, Neurochem. J., 4, 257-264.

    Article  Google Scholar 

  44. Gurinovich, V. A., Evkovich, I. N., Badun, G. V., and Moiseenok, A. G. (2006) Distribution and biotransformation of [3H]-D-panthenol in the normal brain regions and during modeling of aluminum neurotoxicosis [in Russian], Bull. Natl. Acad. Sci. Belarus Ser. Med. Sci., 3, 66-72.

    Google Scholar 

  45. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R., and Ribeiro, F. M. (2016) Alzheimer’s disease: targeting the cholinergic system, Curr. Neuropharmacol., 14, 101-115, https://doi.org/10.2174/1570159x13666150716165726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ronowska, A., Szutowicz, A., Bielarczyk, H., Gul-Hic, S., Klimaszewska-Łata, A., Dys, A., Zysk, M., and Jankowska-Kulaw, A. (2018) The regulatory effects of acetyl-CoA distribution in the healthy and diseased brain, Front. Cell Neurosci., 12, 169-189, https://doi.org/10.3389/fncel.2018.00169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szutowicz, A., Bielarczyk, H., Zyśk, M., Dyś, A., Ronowska, A., Gul-Hinc, S., and Klimaszewska-Łata, J. (2017) Early and late pathomechanisms in Alzheimer’s disease: from zinc to amyloid-β neurotoxicity, Neurochem. Res., 42, 891-904, https://doi.org/10.1007/s11064-016-2154-z.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, Q., Lam, P. Y., Han, D., and Cadenas, E. (2009) Activation of c-jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging, FEBS Lett., 583, 1132-1140, https://doi.org/10.1016/j.febslet.2009.02.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chételat, G., Arbizu, J., Barthel, H., Garibotto, V., Law I., Morbelli, S., van de Giessen, E., Agosta, F., Barkhof, F., Brooks, D. J., Carrillo, M., Dubois, B., Fjell, A. M., Frisoni, J. B., Hansson, O., Herholz, K., Hutton, B., Clifford, R. J., Lammertsma, A., Landau S., Minoshima, S., Nobili, F., Nordberg, A., Ossenkoppele, R., Oyen, W. J., Perani, D., Rabinovici, G. D., Scheltens, Ph., Villemagne, V., Zetterberg, H., and Drzezga, A. (2020) Amyloid-PET and 18 F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias, Lancet Neurol., 19, 951-962, https://doi.org/10.1016/S1474-4422(20)30314-8.

    Article  PubMed  Google Scholar 

  50. Westergaard, N., Waagepetersen, H. S., Belhage, B., and Schousboe, A. (2017) Citrate, a ubiquitous key metabolite with regulatory function, Neurochem. Res., 42, 1583-1588, https://doi.org/10.1007/s11064-016-2159-7.

    Article  CAS  PubMed  Google Scholar 

  51. Currais, A., Huang, L., Goldberg, J., Petrascheck, M., Ates, G., Pinto-Duarte, A., Shokhirev, M., Schubert, D., and Maher, P. (2019) Elevating acetyl-CoA levels reduces aspects of brain aging, Elife, 8, e47866, https://doi.org/10.7554/eLife.47866.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Simpson, I. A., Carruthers, A., and Vannucci, S. J. (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters, J. Cereb. Blood Flow Metab., 27, 1766-1791, https://doi.org/10.1038/sj.jcbfm.9600521.

    Article  CAS  PubMed  Google Scholar 

  53. Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M., and Cheng, A. (2018) Intermittent metabolic switching, neuroplasticity and brain health, Nat. Rev. Neurosci., 19, 63-80, https://doi.org/10.1038/nrn.2017.156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andersen, J. V., Westi, E. W., Jakobsen, E., Urruticoechea, N., Borges, K., and Aldana, B. I. (2021) Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply, Mol. Brain, 14, 132, https://doi.org/10.1186/s13041-021-00842-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bradshaw, P. C. (2021) Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan, Antioxidants, 10, 572, https://doi.org/10.3390/antiox10040572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dobrzyn, P., Bednarski, T., and Dobrzyn, A. (2015) Metabolic reprogramming of the heart through stearoyl-CoA desaturase, Prog. Lipid Res., 57, 1-12, https://doi.org/10.1016/j.plipres.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  57. Venco, P., Dusi, S., Valletta, L., and Tiranti, V. (2014) Alteration of the coenzyme A biosynthetic pathway in neurodegeneration with brain iron accumulation syndromes, Biochem. Soc. Trans., 42, 1069-1074, https://doi.org/10.1042/BST20140106.

    Article  CAS  PubMed  Google Scholar 

  58. Vranken, J. G., Jeong, M. Y., Wei, P., Chen, Y. C., Gygi, S. P., Winge, D. R., and Rutter, J. (2016) The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis, Elife, 5, e17828, https://doi.org/10.7554/eLife.17828.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Werning, M., Müllner, E.W., Mlynek, G., Dobretzberger, V., Djinovic-Carugo, K., Baron, D. M., Prokisch, H., Büchner, B., Klopstock, T., and Salzer, U. (2020) PKAN neurodegeneration and residual PANK2 activities in patient erythrocytes, Ann. Clin. Transl. Neurol., 7, 1340-1351, https://doi.org/10.1002/acn3.51127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang, X., Zhang, J., Jiang, Y., Yao, B., Wang, J., and Wu, Y. (2020) Pilot trial on the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration: a single-arm, open-label study, Orphanet. J. Rare Dis., 15, 248, https://doi.org/10.1186/s13023-020-01530-5.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Klopstock, T., Videnovic, A., Bischoff, A. T., Bonnet, C., Cif, L., Comella, C., Correa-Vela, M., Escolar, M. L., Fraser, J. L., Gonzalez, V., Hermanowicz, N., Jech, R., Jinnah, H. A., Kmiec, T., Lang, A., Martí, M. J., Mercimek-Andrews, S., Monduy, M., Nimmo, G. A. M., Perez-Dueñas, B., Pfeiffer, H. C. V., Planellas, L., Roze, E., Thakur, N., Tochen, L., Vanegas-Arroyave, N., Zorzi, G., Burns, C., and Greblikas, F. (2021) Fosmetpantotenate randomized controlled trial in pantothenate kinase-associated neurodegeneration, Mov. Disord., 36, 1342-1352, https://doi.org/10.1002/mds.28392.

    Article  CAS  PubMed  Google Scholar 

  62. Sharma, K. L., and Jackowski, S. (2018) A therapeutic approach to pantothenate kinase associated neurodegeneration, Nat. Commun., 9, 4399, https://doi.org/10.1038/s41467-018-06703-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, P., Li, J., Liu, Q., Mao, F., Li, J., Qiu, R., Hu, H., Song, Y., Yang, Y., Gao, G., Yan, C., Yang, W., Shao, C., and Gong, Y. (2008) A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42), Am. J. Hum. Genet., 83, 752-759, https://doi.org/10.1016/j.ajhg.2008.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patassini, S., Begley, P., Xu, J., Church, S. J., Reid, S. J., Waldvogel, H. J., Faull, R. L. M., Snell, R. G., Unwin, R. D., and Cooper, G. J. S. (2019) Cerebral vitamin B5 (D-pantothenic acid) deficiency as a potential cause of metabolic perturbation and neurodegeneration in Huntington’s disease, Metabolites, 9, 113, https://doi.org/10.3390/metabo9060113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, J., Patassini, S., Begley, P., Church, S., Waldvogel, H. J., Faull, R., Unwin, R., and Cooper, G. (2020) Cerebral deficiency of vitamin B5 (D-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease, Biochem. Biophys. Res. Commun., 527, 676-681, https://doi.org/10.1016/j.bbrc.2020.05.015.

    Article  CAS  PubMed  Google Scholar 

  66. Ismail, N., Kureishy, N., Church, S. J., Scholefield, M., Unwin, R. D., Xu, J., Patassini, S., and Cooper, G. (2020) Vitamin B5 (D-pantothenic acid) localizes inmyelinated tissues of the rat brain: potential role for cerebral vitamin B5 stores in local myelin homeostasis, Biochem. Biophys. Res. Commun., 552, 220-225, https://doi.org/10.1016/j.bbrc.2019.11.052.

    Article  CAS  Google Scholar 

  67. Sang, C., Philbert, S. A., Hartland, D., Unwin, R. D., Dowsey, A. W., Xu, J., and Cooper, G. (2022) Coenzyme A-dependent tricarboxylic acid cycle enzymes are decreased in Alzheimer’s disease consistent with cerebral pantothenate deficiency, Front. Aging Neurosci., 14, 893159, https://doi.org/10.3389/fnagi.2022.893159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scholefield, M., Church, S. J., Xu, J., Patassini, S., Hooper, N. M., Unwin, R. D., and Cooper, G. (2021) Substantively lowered levels of pantothenic acid (Vitamin B5) in several regions of the human brain in Parkinson’s disease dementia, Metabolites, 11, 569, https://doi.org/10.3390/metabo11090569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lashley, T., Tossounian, M.-A., Heaven, N. C., Wallworth, S., Peak-Chew, S., Bradshaw, A., Cooper, J., de Silva, R., Srai, S. K., Malanchuk, O., Filonenko, V., Koopman, M. B., Rudiger, S., Skehel, M., and Gout, I. (2021) Extensive anti-CoA immunostaining in Alzheimer’s disease and covalent modification of tau by a key cellular metabolite coenzyme A, Front. Cell Neurosci., 15, 739425, https://doi.org/10.3389/fncel.2021.739425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinez-Banaclocha, M. (2022) N-Acetyl-cysteine: modulating the cysteine redox proteome in neurodegenerative diseases, Antioxidants (Basel), 11, 416, https://doi.org/10.3390/antiox11020416.

    Article  CAS  PubMed  Google Scholar 

  71. Kim, G. H., Kim, J. I., Rhie, S. J., and Yoon, S. (2015) The role of oxidative stress in neurodegenerative diseases, Exp. Neurobiol., 24, 325-340, https://doi.org/10.5607/en.2015.24.4.325.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sies, H. (2015) Oxidative stress: a concept in redox biology and medicine, Redox Biol., 4, 180-183, https://doi.org/10.1016/j.redox.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McBean, G. J., Aslan, M., Griffiths, H. P., and Torrao, R. C. (2015) Thiol redox homeostasis in neurodegenerative disease, Redox Biol., 5, 186-194, https://doi.org/10.1016/j.tedox.2015.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Forman, H. J. (2016) Glutathione – from antioxidant to post-translational modifier, Arch. Biochem. Biophys., 595, 64-67, https://doi.org/10.1016/j.abb.2015.11.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kanunnikova N. P., Semenovich D. S., Moiseenok A. G. (2017) The major redox pairs for maintaining the thiol-disulfide balance in the nervous tissue [in Russian], Novosti Med. Biol. Nauk, 15, 84-89.

    Google Scholar 

  76. Smeyne, M., and Smeyne, R. J. (2013) Glutathione metabolism and Parkinson’s disease, Free Radic. Biol. Med., 62, 13-25, https://doi.org/10.1016/j.freeradbiomed.2013.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gu, F., Chauhan, V., and Chauhan, A. (2015) Glutathione redox imbalance in brain disorders, Clin. Nutr. Metab. Care, 18, 89-95, https://doi.org/10.1097/MCO.000000000000134.78.

    Article  CAS  Google Scholar 

  78. Kanunnikova N. P. (2018) Alterations in the thiol-disulfide balance in Parkinson’s disease [in Russian], Bull. Natl. Acad. Sci. Belarus Ser. Med. Sci., 15, 108-118.

    Google Scholar 

  79. Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., and Zuo, L. (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications, Oxid. Med. Cell Longev., 2017, 2525967, https://doi.org/10.1155/2017/2525967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun, J., Cha, Kim, H., Choi, H.-J., Lee, S., and Kim, K. (2017) Protein glutathionylation in the pathogenesis of neurodegenerative diseases, Oxid. Med. Cell. Longev., 2017, 1-9, https://doi.org/10.1155/2017/2818565.

    Article  CAS  Google Scholar 

  81. Dyar, R. E., and Wilken, D. R. (1972) Rat liver levels of coenzyme A-glutathione and of enzymes in its metabolism, Arch. Biochem. Biophys., 153, 619-626, https://doi.org/10.1016/0003-9861(72)90381-5.

    Article  CAS  PubMed  Google Scholar 

  82. Moiseenok, A. G., Khomich, T. I., and Rezyapkin, V. I. (1988) Low molecular weight disulfides in recovery of pantothenate kinase activity [in Russian], Dokl. Akad. Nauk SSSR, 300, 485-487.

    CAS  PubMed  Google Scholar 

  83. Moiseenok, A. G. (2003) Pantothenic acid: from universal distribution to universal functions, Biochemistry, Pharmacology, and Clinical Use of Pantothenic Acid Derivatives [in Russian], sb. nauch. st., (Moyseenok, A. G., ed) Grodno, pp. 107-113.

  84. Moiseenok, A. G. (2018) Coenzyme A-mediated universal mechanism for executing cellular redox-modulating and antioxidant potential [in Russian], Kislorod i Svobodnye Radikaly, sb. mater. nauch.-prakt. konf. s mezhdun. uch. (Zinchuk, V. V., ed) Grodno, GrGMU, pp. 137-142.

  85. Stepanichev, M. Yu., Onufriev, M. V., and Moiseeva, Yu. V. (2006) An effect of tumor necrosis factor alpha- and beta-amyloid peptide (25-35) on free radical oxidation and caspase-3 activity in rat brain [in Russian], Neyrokhimiya, 23, 217-222.

    CAS  Google Scholar 

  86. Slyshenkov, V. S., Sheval’e, A. A., and Moiseenok, A. G. (2006) Pantothenate in preventing alteration in the glutathione synaptosome system and functional state of synaptosomal membrane in oxidative stress [in Russian], Neyrokhimiya, 23, 313-317.

    CAS  Google Scholar 

  87. Stepanichev, M. Yu., Onufriev, M. V., Piskunov, A. K., Moiseeva, Yu. V., Lazareva, N. A., Moiseenok, A. G., Gusev, P. V., and Gulyaeva, N. V. (2013) The effects of derivatives of pantothenic acid on free-radical processes and the corticosterone level in the hippocampus and neocortex of rats after interoceptive stress, Neurochem. J., 7, 144-149.

    Article  CAS  Google Scholar 

  88. Stepanichev, M. Yu., Markov, D. A., Freyman, S. V., Frolova, S. V., Omel’yanchik, S. N., Borodina, T. A., Novikova, M. R., Kanunnikova, N. P., Onufriev, M. V., Moiseenok, A. G., and Gulyaeva, N. V. (2016) Combined treatment with pantothenic acid derivatives and memantine alleviates scopolamine-induced amnesia in rats: The involvement of the thiol redox state and coenzyme A, Neurochem. J., 10, 120-130.

    Article  Google Scholar 

  89. Moiseenok, A. G., Omel’yanchik, S. N., Gurinovich, V. A., Evkovich, I. N., and Petukhova, T. P. (2005) System of CoA biosynthesis in lipopolysaccharide and aluminum chloride intoxication [in Russian], Novosti Med. Biol. Nauk, 1, 51-55.

    Google Scholar 

  90. Semenovich, D. S., Lukienko, E. P., and Kanunnikova, N. P. (2021) Modulating oxidative stress indices and thiol-disulfide balance in the brain structures by pantothenic acid derivatives in an experimental model of Parkinson’s disease, Neurochem. J., 15, 24-29.

    Article  CAS  Google Scholar 

  91. Semenovich, D. S., Kanunnikova, N. P., Lukienko, E. P., Borodina, T. A., Omel’yanchik, S. N., Filipovich, N. A., Gurinovich, V. A., and Moyseenok, A. G. (2016) Modulation of the CoA biosynthesis system and thiol-disulfide balance in rat cerebral hemispheres during systemic inflammation and iron saturation [in Russian], Vesnik Yanka Kupala State University of Grodno. Ser. 5. Economics. Soc. Biol., 6, 140-147.

    Google Scholar 

  92. Semenovich, D. S., Lukiyenko, E. P., Titko, O. V., and Kanunnikova, N. P. (2018) Panthenol and succinate as modulators of changes of redox balance and energy metabolism in the experimental model of Parkinson’s disease, Ind. J. Appl. Res., 8, 436-438.

    Google Scholar 

  93. Nobakht, M., Hoseini, S. M., Mortazavi, P., Sohrabi, I., Esmailzade, B., Rooshandel, N., and Omidzahir, S. (2011) Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer’s disease, Iran Biomed. J., 15, 51-58.

    PubMed  PubMed Central  Google Scholar 

  94. Semenovich, D. S., and Kanunnikova, N. P. (2019) The glutathione system and protein S-glutathionylation in rat brain structures during aluminum neurotoxicosis and correction by CoA biosynthesis modulators [in Russian], Vesnik Yanka Kupala State University of Grodno. Ser. 5. Economics. Soc. Biol., 9, 144-151.

    Google Scholar 

  95. Semenovich, D. S., and Kanunnikova, N. P. (2020) S-glutathionylation of proteins in various types of neurodegenerative pathology and protective effects of pantothenic acid derivatives, J. Integr. OMICS, 10, 19-25, https://doi.org/10.5584/jiomics.v10i1.307.

    Article  Google Scholar 

  96. Kanunnikova, N. P., Semenovich, D. C., Gurinovich, V. A., Lukienko, E. P., Titko, O. V., Mamchic, D. K., Pesnjak, A. V., and Mojseenok, A. G. (2019) Neurochemical effects of modulated CoA system in aluminum neurotoxicosis [in Russian], Biochem. Mol. Biol. Sb. Nauch. Tr., vol. 3, Minsk, pp. 95-98.

  97. Semenovich, D. S., Kanunnikova, N. P., and Moiseenok, A. G. (2020) Oxidative stress in brain mitochondria in aluminum neurotoxicosis and administration of modulators of glutathione and coenzyme A biosynthesis [in Russian], Dokl. Natl. Acad. Sci. Belarus Med. Sci., 64, 78-85, https://doi.org/10.29235/1561-8323-2020-64-1-78-85.

    Article  Google Scholar 

  98. Semenovich, D. S., Plotnikov, E. Yu., Lukiyenko, E. P., Titko, O. V., and Kanunnikova, N. P. (2021) Effects of panthenol and N-acetylcysteine on changes in the redox state of brain mitochondria under oxidative stress in vitro, Antioxidants, 10, 1699, https://doi.org/10.3390/antiox10111699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moiseenok, A. G., Omel’janchik, S. N., Gurinovich, V. A., Sheval’e, A. A., Katkovskaja, I. N., Nedosekina, T. P., Guljaeva, N. V. (2008) A relationship between S-acylation, nitrosylation, disulfide formation and coenzyme A biosynthesis in the mechanisms of neuroprotection and neurodegeneration [in Russian], Func. Sist. Organ. Norm. Patol., sb. nauch. tr. (Ulashhik, V. S., and Chumak, A. G., eds) Minsk, RIVSh, pp. 407-412.

  100. Utno, L. Ja. (1991) Pantethine: Metabolism, Pharmacology and Regulation of Lipid metabolism [in Russian], Riga, Zinatne.

  101. Gunar, V. I. (1997) Coenzyme “A” and Its Precursors: Synthesis, Analysis and Experimental Study [in Russian], Moskva.

  102. Moiseenok, A. G. (2013) Biological Functions of Pantothenic Acid. Pantothenic Acid and the Brain. New Opportunities in Metabolic and Dietary Therapies. Proceedings of the International Symposium, Grodno.

  103. Moiseenok, A. G., Cverbaum, E. A., and Rybalko, M. A. (1981) Biotransformation of pantothenic acid in settings of human vitamin deficiency [in Russian], Vopr. Med. Khim., 27, 780-784.

    CAS  PubMed  Google Scholar 

  104. Moiseenok, A. G. (1979) Pantothenic acid, Exp. Vitaminol. [in Russian] (Ostrovskij, Ju. M., ed) Minsk, Nauka i Tehnika, pp. 267-320.

  105. Berry, T., Abohamza, E., and Moustafa, A. A. (2020) A disease-modifying treatment for Alzheimer’s disease: focus on the trans-sulfuration pathway, Rev. Neurosci., 31, 319-334, https://doi.org/10.1515/revneuro-2019-0076.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.G. Moiseenok – conceived the review, wrote Introduction, “Coenzyme a Biosynthesis and Hydrolysis in the CNS”, “CNS-Directed Pantothenic Acid Transport”, “Neuroprotection and Cholinergic Neurotransmission” (in cooperation with N.P. Kanunnikova), “Neurodegenerative Syndromes Associated with CoA Biosynthesis Pathway” sections and concluding remarks; N.P. Kanunnikova – contributed to the sections “Neuroprotection and Cholinergic Neurotransmission”, “Pantothenic Acid Deficiency in Neurodegenerative Diseases”, and concluding remarks, compiled References List and wrote Abstract.

Corresponding author

Correspondence to Andrey G. Moiseenok.

Ethics declarations

Authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenok, A.G., Kanunnikova, N.P. Brain CoA and Acetyl CoA Metabolism in Mechanisms of Neurodegeneration. Biochemistry Moscow 88, 466–480 (2023). https://doi.org/10.1134/S000629792304003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792304003X

Keywords

Navigation