Skip to main content
Log in

Presynaptic Plasticity Is Associated with Actin Polymerization

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Modulation of presynaptic short-term plasticity induced by actin polymerization was studied in rat hippocampal slices using the paired-pulse paradigm. Schaffer collaterals were stimulated with paired pulses with a 70-ms interstimulus interval every 30 s before and during perfusion with jasplakinolide, an activator of actin polymerization. Jasplakinolide application resulted in the increase in the amplitudes of CA3-CA1 responses (potentiation) accompanied by a decrease in the paired-pulse facilitation, suggesting induction of presynaptic modifications. Jasplakinolide-induced potentiation depended on the initial paired-pulse rate. These data indicate that the jasplakinolide-mediated changes in actin polymerization increased the probability of neurotransmitter release. Less typical for CA3-CA1 synapses responses, such as a very low paired-pulse ratio (close to 1 or even lower) or even paired-pulse depression, were affected differently. Thus, jasplakinolide caused potentiation of the second, but not the first response to the paired stimulus, which increased the paired-pulse ratio from 0.8 to 1.0 on average, suggesting a negative impact of jasplakinolide on the mechanisms promoting paired-pulse depression. In general, actin polymerization facilitated potentiation, although the patterns of potentiation differed depending on the initial synapse characteristics. We conclude that in addition to the increase in the neurotransmitter release probability, jasplakinolide induced other actin polymerization-dependent mechanisms, including those involved in the paired-pulse depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

LTP:

long-term potentiation

PPD:

paired-pulse depression

PPF:

paired-pulse facilitation

PPR:

paired-pulse ratio

References

  1. Choquet, D., and Triller, A. (2013) The dynamic synapse, Neuron, 80, 691-703, https://doi.org/10.1016/j.neuron.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer, D., Bonhoeffer, T., and Scheuss, V. (2014) Balance and stability of synaptic structures during synaptic plasticity, Neuron, 82, 430-443, https://doi.org/10.1016/j.neuron.2014.02.031.

    Article  CAS  PubMed  Google Scholar 

  3. Kudryashova, I. V. (2019) The molecular basis of destabilization of synapses as a factor of structural plasticity, Neurochem. J., 13, 3-13, https://doi.org/10.1134/S1819712419010136.

    Article  Google Scholar 

  4. Dillon, C., and Goda, Y. (2005) The actin cytoskeleton: integrating form and function at the synapse, Annu. Rev. Neurosci., 28, 25-55, https://doi.org/10.1146/annurev.neuro.28.061604.135757.

    Article  CAS  PubMed  Google Scholar 

  5. Cingolani, L. A., and Goda, Y. (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy, Nat. Rev. Neurosci., 9, 344-356, https://doi.org/10.1038/nrn2373.

    Article  CAS  PubMed  Google Scholar 

  6. Ramachandran, B., and Frey, J. U. (2009) Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro, J. Neurosci., 29, 12167-12173, https://doi.org/10.1523/JNEUROSCI.2045-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rex, C. S., Gavin, C. F., Rubio, M. D., Kramar, E. A., Chen, L. Y., et al. (2010) Myosin IIB regulates actin dynamics during synaptic plasticity and memory formation, Neuron, 67, 603-617, https://doi.org/10.1016/j.neuron.2010.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krucker, T., Siggins, G. R., and Halpain, S. (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus, Proc. Natl. Acad. Sci. USA, 97, 6856-6861, https://doi.org/10.1073/pnas.100139797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kramar, E. A., Lin, B., Rex, C. S., Gall, C. M., and Lynch, G. (2006) Integrin-driven actin polymerization consolidates long-term potentiation, Proc. Natl. Acad. Sci. USA, 103, 5579-5584, https://doi.org/10.1073/pnas.0601354103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Messaoudi, E., Kanhema, T., Soule, J., Tiron, A., Dagyte, G., et al. (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo, J. Neurosci., 27, 10445-10455, https://doi.org/10.1523/JNEUROSCI.2883-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galvez, B., Gross, N., and Sumikawa, K. (2016) Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats, Neuropharmacology, 105, 378-387, https://doi.org/10.1016/j.neuropharm.2016.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shupliakov, O., Bloom, O., Gustafsson, J. S., Kjaerulff, O., Low, P., et al. (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton, Proc. Natl. Acad. Sci. USA, 99, 14476-14481, https://doi.org/10.1073/pnas.212381799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Böhme, M. A., McCarthy, A. W., Grasskamp, A. T., Beuschel, C. B., Goel, P., et al. (2019) Rapid active zone remodeling consolidates presynaptic potentiation, Nat. Commun., 10, 1085, https://doi.org/10.1038/s41467-019-08977-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morales, M., Colicos, M. A., and Goda, Y. (2000) Actin-dependent regulation of neurotransmitter release at central synapses, Neuron, 27, 539-550, https://doi.org/10.1016/S0896-6273(00)00064-7.

    Article  CAS  PubMed  Google Scholar 

  15. Sankaranarayanan, S., Atluri, P. P., and Ryan, T. A. (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function, Nat. Neurosci., 6, 127-135, https://doi.org/10.1038/nn1002.

    Article  CAS  PubMed  Google Scholar 

  16. Rust, M. B., and Maritzen, T. (2015) Relevance of presynaptic actin dynamics for synapse function and mouse behavior, Exp. Cell Res., 335, 165-171, https://doi.org/10.1016/j.yexcr.2014.12.020.

    Article  CAS  PubMed  Google Scholar 

  17. Malinow, R., and Tsien, R. W. (1990) Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices, Nature, 46, 177-180, https://doi.org/10.1038/346177a0.

    Article  Google Scholar 

  18. Malgaroli, A., Ting, A. E., Wendland, B., Bergamaschi, A., Villa, A., et al. (1995) Presynaptic component of long-term potentiation visualized at individual hippocampal synapses, Science, 268, 1624-1628, https://doi.org/10.1126/science.7777862.

    Article  CAS  PubMed  Google Scholar 

  19. Nicoll, R. A., and Malenka, R. C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus, Nature, 377, 115-118, https://doi.org/10.1038/377115a0.

    Article  CAS  PubMed  Google Scholar 

  20. Blundon, J. A., and Zakharenko, S. S. (2008) Dissecting the components of long-term potentiation, Neuroscientist, 14, 598-608, https://doi.org/10.1177/1073858408320643.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sokolov, M. V., Rossokhin, A. V., Astrelin, A. V., Frey, J. U., and Voronin, L. L. (2002) Quantal analysis suggests strong involvement of presynaptic mechanisms during the initial maintenance of long-term potentiation in rat hippocampal CA1 area in vitro, Brain Res., 957, 61-75, https://doi.org/10.1016/S0006-8993(02)03600-4.

    Article  CAS  PubMed  Google Scholar 

  22. Emptage, N. J., Reid, C. A., Fine, A., and Bliss, T. V. (2003) Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses, Neuron, 38, 797-804, https://doi.org/10.1016/S0896-6273(03)00325-8.

    Article  CAS  PubMed  Google Scholar 

  23. Stanton, P. K., Winterer, J., Zhang, X. L., and Muller, W. (2005) Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices, Eur. J. Neurosci., 22, 2451-2461, https://doi.org/10.1111/j.1460-9568.2005.04437.x.

    Article  PubMed  Google Scholar 

  24. Bayazitov, I. T., Richardson, R. J., Fricke, R. G., and Zakharenko, S. S. (2007) Slow presynaptic and fast postsynaptic components of compound long-term potentiation, J. Neurosci., 27, 11510-11521, https://doi.org/10.1523/JNEUROSCI.3077-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kudryashova, I. V., Onufriev, M. V., and Gulyaeva, N. V. (2014) Caspase-3 and calpain: differently directed involvement in presynaptic long-term plasticity, Neurochem. J., 8, 162-167, https://doi.org/10.1134/S181971241403009X.

    Article  CAS  Google Scholar 

  26. Kuhnt, U., and Voronin, L. L. (1994) Interaction between paired-pulse facilitation and long-term potentiation in area CA1 of guinea-pig hippocampal slices: application of quantal analysis, Neuroscience, 62, 391-397, https://doi.org/10.1016/0306-4522(94)90374-3.

    Article  CAS  PubMed  Google Scholar 

  27. Schulz, P. E., Cook, E. P., and Johnston, D. (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation, J. Neurosci., 14, 5325-5337, https://doi.org/10.1523/JNEUROSCI.14-09-05325.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao, J., Qi, J., and Chen, G. (2006) Actin-Dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons, J. Neurosci., 26, 8137-8147, https://doi.org/10.1523/JNEUROSCI.1183-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guzman, G. A., Guzman, R. E., Jordan, N., and Hidalgo, P. A. (2019) Tripartite interaction among the calcium channel α1- and β-subunits and F-Actin increases the readily releasable pool of vesicles and its recovery after depletion, Front. Cell Neurosci., 13, 125, https://doi.org/10.3389/fncel.2019.00125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zucker, R. S., and Regehr, W. G. (2002) Short-term synaptic plasticity, Annu. Rev. Physiol., 64, 355-405, https://doi.org/10.1146/annurev.physiol.64.092501.114547.

    Article  CAS  PubMed  Google Scholar 

  31. Fioravante, D., and Regehr, W. G. (2011) Short-term forms of presynaptic plasticity, Curr. Opin. Neurobiol., 21, 269-274, https://doi.org/10.1016/j.conb.2011.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bubb, M. R., Spector, I., Beyer, B. B., and Fosen, K. M. (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations, J. Biol. Chem., 275, 5163-5170, https://doi.org/10.1074/jbc.275.7.5163.

    Article  CAS  PubMed  Google Scholar 

  33. Lazarevic, V., Pothula, S., Andres-Alonso, M., and Fejtova, A. (2013) Molecular mechanisms driving homeostatic plasticity of neurotransmitter release, Front. Cell Neurosci., 7, 244, https://doi.org/10.3389/fncel.2013.00244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis, G. W., and Muller, M. (2015) Homeostatic control of presynaptic neurotransmitter release, Annu. Rev. Physiol., 77, 251-270, https://doi.org/10.1146/annurev-physiol-021014-071740.

    Article  CAS  PubMed  Google Scholar 

  35. Ortega, J. M., Genç, Ö., and Davis, G. W. (2018) Molecular mechanisms that stabilize short term synaptic plasticity during presynaptic homeostatic plasticity, eLife, 7, e40385, https://doi.org/10.7554/eLife.40385.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goel, P., Bergeron, D. D., Böhme, M. A., Nunnelly, L., Lehmann, M., et al. (2019) Homeostatic scaling of active zone scaffolds maintains global synaptic strength, J. Cell Biol., 18, 1706-1724, https://doi.org/10.1083/jcb.201807165.

    Article  CAS  Google Scholar 

  37. Ivanov, A., Esclapez, M., Pellegrino, Ch., Shirao, T., and Ferhat, L. (2009) Drebrin A regulates dendritic spine plasticity and synaptic function in mature cultured hippocampal neurons, J. Cell Sci., 122, 524-534, https://doi.org/10.1242/jcs.033464.

    Article  CAS  PubMed  Google Scholar 

  38. Bleckert, A., Photowala, H., and Alford, S. (2012) Dual pools of actin at presynaptic terminals, J. Neurophysiol., 107, 3479-3492, https://doi.org/10.1152/jn.00789.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrade, A. L., and Rossi, D. J. (2010) Simulated ischaemia induces Ca2+-independent glutamatergic vesicle release through actin filament depolymerization in area CA1 of the hippocampus, J. Physiol., 588, 1499-1514, https://doi.org/10.1113/jphysiol.2010.187609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rex, C. S., Chen, L. Y., Sharma, A., Liu, J., Babayan, A. H., et al. (2009) Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation, J. Cell Biol., 186, 85-97, https://doi.org/10.1083/jcb.200901084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaviño, M. A., Ford, K. J., Archila, S., and Davis, G. W. (2015) Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance, eLife, 4, e05473, https://doi.org/10.7554/eLife.05473.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bloom, O., Evergren, E., Tomilin, N., Kjaerulff, O., Low, P., et al. (2003) Colocalization of synapsin and actin during synaptic vesicle recycling, J. Cell Biol., 161, 737-747, https://doi.org/10.1083/jcb.200212140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, W., and Benson, D. L. (2001) Stages of synapse development defined by dependence on F-actin, J. Neurosci., 21, 5169-5181, https://doi.org/10.1523/JNEUROSCI.21-14-05169.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ackermann, F., Waites, C. L., and Garner, C. C. (2015) Presynaptic active zones in invertebrates and vertebrates, EMBO Rep., 16, 923-938, https://doi.org/10.15252/embr.201540434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Südhof, T. C. (2012) The presynaptic active zone, Neuron, 75, 11-25, https://doi.org/10.1016/j.neuron.2012.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, J. S., Ho, W. K., Neher, E., and Lee, S. H. (2013) Superpriming of synaptic vesicles after their recruitment to the readily releasable pool, Proc. Natl. Acad. Sci. USA, 110, 15079-15084, https://doi.org/10.1073/pnas.1314427110.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ghelani, T., and Sigrist, S. J. (2018) Coupling the structural and functional assembly of synaptic release sites, Front. Neuroanat., 12, 81, https://doi.org/10.3389/fnana.2018.00081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Halpain, S. (2003) Actin in a supporting role, Nat. Neurosci., 6, 101-102, https://doi.org/10.1038/nn0203-101.

    Article  CAS  PubMed  Google Scholar 

  49. Miki, T., Malagon, G., Pulido, C., Llano, I., Neher, E., et al. (2016) Actin- and myosin- dependent vesicle loading of presynaptic docking sites prior to exocytosis, Neuron, 91, 808-823, https://doi.org/10.1016/j.neuron.2016.07.033.

    Article  CAS  PubMed  Google Scholar 

  50. Holderith, N., Lorincz, A., Katona, G., Rózsa, B., Kulik, A., et al. (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone, Nat. Neurosci., 15, 988-997, https://doi.org/10.1038/nn.3137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Körber, Ch., and Kuner, Th. (2016) Molecular machines regulating the release probability of synaptic vesicles at the active zone, Front. Synapt. Neurosci., 8, 5, https://doi.org/10.3389/fnsyn.2016.00005.

    Article  Google Scholar 

  52. Bruckner, J. J., Zhan, H., Gratz, S. J., Rao, M., Ukken, F., et al. (2017) Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release, J. Cell Biol., 216, 231-246, https://doi.org/10.1083/jcb.201601098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gustafsson, B., Ma, R., and Hanse, E. (2019) The small and dynamic pre-primed pool at the release site; A useful concept to understand release probability and short-term synaptic plasticity?, Front. Synapt. Neurosci., 11, 7, https://doi.org/10.3389/fnsyn.2019.00007.

    Article  CAS  Google Scholar 

  54. Mochida, S. (2019) Presynaptic calcium channels, Int. J. Mol. Sci., 20, 2217, https://doi.org/10.3390/ijms20092217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leal-Ortiz, S., Waites, C. L., Terry-Lorenzo, R., Zamorano, P., Gundelfinger, E. D., et al. (2008) Piccolo modulation of synapsin1a dynamics regulates synaptic vesicle exocytosis, J. Cell Biol., 181, 831-846, https://doi.org/10.1083/jcb.200711167.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Waites, C. L., Leal-Ortiz, S. A., Andlauer, T. F., Sigrist, S. J., and Garner, C. C. (2011) Piccolo regulates the dynamic assembly of presynaptic F-actin, J. Neurosci., 31, 14250-14263, https://doi.org/10.1523/JNEUROSCI.1835-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dason, J. S., Smith, A. J., Marin, L., and Charlton, M. P. (2014) Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane, J. Physiol., 592, 621-633, https://doi.org/10.1113/jphysiol.2013.265447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakaba, T., and Neher, E. (2003) Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse, J. Neurosci., 23, 837-846, https://doi.org/10.1523/JNEUROSCI.23-03-00837.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gundelfinger, E. D., and Fejtova, A. (2012) Molecular organization and plasticity of the cytomatrix at the active zone, Curr. Opin. Neurobiol., 22, 423-430, https://doi.org/10.1016/j.conb.2011.10.005.

    Article  CAS  PubMed  Google Scholar 

  60. Lee, J. S., Ho, W. K., and Lee, S. H. (2012) Actin-dependent rapid recruitment of reluctant synaptic vesicles into a fast-releasing vesicle pool, Proc. Natl. Acad. Sci. USA, 109, E765-E774, https://doi.org/10.1073/pnas.1114072109.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Engholm-Keller, K., Waardenberg, A. J., Müller, J. A., Wark, J. R., Fernando, R. N., et al. (2019) The temporal profile of activity-dependent presynaptic phospho-signalling reveals long-lasting patterns of poststimulus regulation, PLoS Biol., 17, e3000170, https://doi.org/10.1371/journal.pbio.3000170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okamoto, K., Nagai, T., Miyawaki, A., and Hayashi, Y. (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity, Nat. Neurosci., 7, 1104-1112, https://doi.org/10.1038/nn1311.

    Article  CAS  PubMed  Google Scholar 

  63. Holzinger, A. (2009) Jasplakinolide: an actin-specific reagent that promotes actin polymerization, Meth. Mol. Biol., 586, 71-87, https://doi.org/10.1007/978-1-60761-376-3_4.

    Article  CAS  Google Scholar 

  64. Kudryashova, I. V. (2021) The reorganization of the actin matrix as a factor of presynaptic plasticity, Neurochem. J., 15, 217-225, https://doi.org/10.1134/S1819712421030089.

    Article  CAS  Google Scholar 

  65. Kudryashova, I. V. (2022) Inhibitory control of short-term plasticity during paired pulse stimulation depends on actin polymerization, Neurochem. J., 16, 136-146, https://doi.org/10.1134/S1819712422020106.

    Article  CAS  Google Scholar 

  66. Sun, H. Y., Li, Q., Bartley, A. F., and Dobrunz, L. E. (2018) Target-cell-specific short-term plasticity reduces the excitatory drive onto CA1 interneurons relative to pyramidal cells during physiologically-derived spike trains, Neuroscience, 388, 430-447, https://doi.org/10.1016/j.neuroscience.2018.07.051.

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan, J. M. (2007) A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression, J. Neurophysiol., 97, 948-950, https://doi.org/10.1152/jn.00554.2006.

    Article  PubMed  Google Scholar 

  68. Catterall, W. A., Leal, K., and Nanou, E. (2013) Calcium channels and short-term synaptic plasticity, J. Biol. Chem., 288, 10742-10749, https://doi.org/10.1074/jbc.R112.411645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaksonen, M., Toret, C. P., and Drubin, D. G. (2006) Harnessing actin dynamics for clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol., 7, 404-414, https://doi.org/10.1038/nrm1940.

    Article  CAS  PubMed  Google Scholar 

  70. Verstegen, A. M., Tagliatti, E., Lignani, G., Marte, A., Stolero, T., et al. (2014) Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses, J. Neurosci., 34, 7266-7280, https://doi.org/10.1523/JNEUROSCI.3973-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, X. S., Lee, S. H., Sheng, J., Zhang, Z., Zhao, W. D., et al. (2016) Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses, Neuron, 92, 1020-1035, https://doi.org/10.1016/j.neuron.2016.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaeser, P. S., and Regehr, W. G. (2017) The readily releasable pool of synaptic vesicles, Curr. Opin. Neurobiol., 43, 63-70, https://doi.org/10.1016/j.conb.2016.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bourne, J., Morgan, J. R., and Pieribone, V. A. (2006) Actin polymerization regulates clathrin coat maturation during early stages of synaptic vesicle recycling at lamprey synapses, J. Comp. Neurol., 497, 600-609, https://doi.org/10.1002/cne.21006.

    Article  PubMed  Google Scholar 

  74. Bahler, M., and Greengard, P. (1987) Synapsin I bundles F-actin in a phosphorylation- dependent manner, Nature, 326, 704-707, https://doi.org/10.1038/326704a0.

    Article  CAS  PubMed  Google Scholar 

  75. Rosahl, T. W., Geppert, M., Spillane, D., Herz, J., Hammer, R. E., et al. (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I, Cell, 75, 661-670, https://doi.org/10.1016/0092-8674(93)90487-B.

    Article  CAS  PubMed  Google Scholar 

  76. Vasileva, M., Horstmann, H., Geumann, C., Gitler, D., and Kuner, T. (2012) Synapsin-dependent reserved pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission, Eur. J. Neurosci., 36, 3005-3020, https://doi.org/10.1111/j.1460-9568.2012.08225.x.

    Article  PubMed  Google Scholar 

  77. Orlando, M., Lignani, G., Maragliano, L., Fassio, A., Onofri, F., et al. (2014) Functional role of ATP binding to synapsin I in synaptic vesicle trafficking and release dynamics, J. Neurosci., 34, 14752-14768, https://doi.org/10.1523/JNEUROSCI.1093-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watanabe, S., Rost, B. R., Camacho-Perez, M., Davis, M. W., Sohl-Kielczynski, B., et al. (2013) Ultrafast endocytosis at mouse hippocampal synapses, Nature, 504, 242-247, https://doi.org/10.1038/nature12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rozov, A., and Burnashev, N. (1999) Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression, Nature, 401, 594-598, https://doi.org/10.1038/44151.

    Article  CAS  PubMed  Google Scholar 

  80. Brody, D. L., and Yue, D. T. (2000) Release-independent short-term synaptic depression in cultured hippocampal neurons, J. Neurosci., 20, 2480-2494, https://doi.org/10.1523/JNEUROSCI.20-07-02480.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nanou, E., and Catterall, W. A. (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease, Neuron, 98, 466-481, https://doi.org/10.1016/j.neuron.2018.03.017.

    Article  CAS  PubMed  Google Scholar 

  82. Chamberland, S., Evstratova, A., and Toth, K. (2014) Interplay between synchronization of multivesicular release and recruitment of additional release sites support short-term facilitation at hippocampal mossy fiber to CA3 pyramidal cells synapses, J. Neurosci., 34, 11032-11047, https://doi.org/10.1523/JNEUROSCI.0847-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rajappa, R., Gauthier-Kemper, A., Böning, D., Hüve, J., and Klingauf, J. (2016) Synaptophysin 1 clears synaptobrevin 2 from the presynaptic active zone to prevent short-term depression, Cell Rep., 14, 1369-1381, https://doi.org/10.1016/j.celrep.2016.01.031.

    Article  CAS  PubMed  Google Scholar 

  84. Hruska, M., Henderson, N., Le Marchand, S. J., Jafri, H., and Dalva, M. B. (2018) Synaptic nanomodules underlie the organization and plasticity of spine synapses, Nat. Neurosci., 21, 671-682, https://doi.org/10.1038/s41593-018-0138-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Catterall, W. A., and Few, A. P. (2008) Calcium channel regulation and presynaptic plasticity, Neuron, 59, 882-901, https://doi.org/10.1016/j.neuron.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  86. Eggermann, E., Bucurenciu, I., Goswami, S. P., and Jonas, P. (2012) Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses, Nat. Rev. Neurosci., 13, 7-21, https://doi.org/10.1038/nrn3125.

    Article  CAS  Google Scholar 

  87. Scimemi, A., and Diamond, J. S. (2012) The number and organization of Ca2+ channels in the active zone shapes neurotransmitter release from schaffer collateral synapses, J. Neurosci., 32, 18157-18176, https://doi.org/10.1523/JNEUROSCI.3827-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yan, J., Leal, K., Magupalli, V. G., Nanou, E., Martinez, G. Q., et al. (2014) Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation, Mol. Cell Neurosci., 63, 124-131, https://doi.org/10.1016/j.mcn.2014.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nanou, E., Sullivan, J. M., Scheuer, T., and Catterall, W. A. (2016) Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons, Proc. Natl. Acad. Sci. USA, 113, 1062-1067, https://doi.org/10.1073/pnas.1524636113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mochida, S. (2011) Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity, Neurosci. Res., 70, 16-23, https://doi.org/10.1016/j.neures.2011.03.005.

    Article  PubMed  Google Scholar 

  91. Zhao, C., Dreosti, E., and Lagnado, L. (2011) Homeostatic synaptic plasticity through changes in presynaptic calcium influx, J. Neurosci., 31, 7492-7496, https://doi.org/10.1523/JNEUROSCI.6636-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leal, K., Mochida, S., Scheuer, T., and Catterall, W. A. (2012) Fine-tuning synaptic plasticity by modulation of CaV2.1 channels with Ca2+ sensor proteins, Proc. Natl. Acad. Sci. USA, 109, 17069-17074, https://doi.org/10.1073/pnas.1215172109.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thanawala, M. S., and Regehr, W. G. (2013) Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily-releasable pool, J. Neurosci., 33, 4625-4633, https://doi.org/10.1523/JNEUROSCI.4031-12.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lee, A., Westenbroek, R. E., Haeseleer, F., Palczewski, K., Scheuer, T., et al. (2002) Differential modulation of CaV2.1 channels by calmodulin and Ca2+-binding protein 1, Nat Neurosci., 5, 210-217, https://doi.org/10.1038/nn805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Magupalli, V. G., Mochida, S., Yan, J., Jiang, X., Westenbroek, R. E., et al. (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels, J. Biol. Chem., 288, 4637-4648, https://doi.org/10.1074/jbc.M112.369058.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation for 2021-2023 (AAAA-A17-117092040002-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kudryashova.

Ethics declarations

The author declares no conflict of interest. The funding organization had no role in the study design, collection, analysis and interpretation of data, writing of the manuscript, and decision to publish the results. All experiments were conducted according to the guidelines of the Declaration of Helsinki, EU Directive 2010/63/EU on the protection of animals used for scientific purposes, and experimental protocols approved by the Ethics Committee of the Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashova, I. Presynaptic Plasticity Is Associated with Actin Polymerization. Biochemistry Moscow 88, 392–403 (2023). https://doi.org/10.1134/S0006297923030082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923030082

Keywords

Navigation