Skip to main content
Log in

Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as “the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment” is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-HT:

serotonin

5-HTT:

serotonin transporter

Akt:

RAC-alpha serine/threonine protein kinase

ASD:

autistic spectrum disorders

AVP:

arginine–vasopressin

CARS:

childhood autism rating scale

CSF:

cerebrospinal fluid

E/I:

excitation/inhibition balance

FMRP:

fragile X mental retardation protein

FR:

folate receptor

FRab:

folate receptor autoantibodies

FXS:

fragile X syndrome

GABA:

gamma-aminobutyric acid

Glx:

total glutamine + glutamate concentration

MRS:

magnetic resonance spectroscopy

MTHF:

5-methyltetrahydrofolate

mTOR:

mammalian target of rapamycin protein kinase

OT:

oxytocin

OTR:

oxytocin receptor

References

  1. Simashkova, N. V., Boksha, I. S., Klyushnik, T. P., Iakupova, L. P., Ivanov, M. V., and Mukaetova-Ladinska, E. B. (2019) Diagnosis and management of autism spectrum disorders in Russia: clinical-biological approaches, J. Autism Dev. Disord., 49, 3906-3914, https://doi.org/10.1007/s10803-019-04071-4.

    Article  PubMed  Google Scholar 

  2. Cheng, N., Rho, J. M., and Masino, S. A. (2017) Metabolic dysfunction underlying autism spectrum disorder and potential treatment approaches, Front. Mol. Neurosci., 10, 34, https://doi.org/10.3389/fnmol.2017.00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muhle, R. A., Reed, H. E., Stratigos, K. A., and Veenstra-VanderWeele, J. (2018) The emerging clinical neuroscience of autism spectrum disorder, JAMA Psychiatry, 75, 514, https://doi.org/10.1001/jamapsychiatry.2017.4685.

    Article  PubMed  Google Scholar 

  4. Boksha, I. S., Prokhorova, T. A., Tereshkina, E. B., Savushkina, O. K., and Burbaeva, G. Sh. (2021) Protein phosphorylation signaling cascades in autism: the role of mTOR pathway, Biochemistry (Moscow), 86, 577-596, https://doi.org/10.1134/S0006297921050072.

    Article  CAS  PubMed  Google Scholar 

  5. Siafis, S., Çıray, O., Wu, H., Schneider-Thoma, J., Bighelli, I., Krause, M., Rodolico, A., Ceraso, A., Deste, G., Huhn, M., Fraguas, D., San José Cáceres, A., Mavridis, D., Charman, T., Murphy, D. G., Parellada, M., Arango, C., and Leucht, S. (2022) Pharmacological and dietary-supplement treatments for autism spectrum disorder: a systematic review and network meta-analysis, Mol. Autism, 13, 10, https://doi.org/10.1186/s13229-022-00488-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Persico, A. M., Ricciardello, A., Lamberti, M., Turriziani, L., Cucinotta, F., Brogna, C., Vitiello, B., and Arango, C. (2021) The pediatric psychopharmacology of autism spectrum disorder: A systematic review – Part I: The past and the present, Prog. Neuropsychopharmacol. Biol. Psychiatry, 110, 110326, https://doi.org/10.1016/j.pnpbp.2021.110326.

    Article  CAS  PubMed  Google Scholar 

  7. Port, R. G., Gaetz, W., Bloy, L., Wang, D-J., Blaskey, L., Kuschner, E. S., Levy, S. E., Brodkin, E. S., and Roberts, T. P. L. (2017) Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD, Autism Res., 10, 593-607, https://doi.org/10.1002/aur.1686.

    Article  PubMed  Google Scholar 

  8. Jensen, A. R., Lane, A. L., Werner, B. A., McLees, S. E., Fletcher, T. S., and Frye, R. E. (2022) Modern biomarkers for autism spectrum disorder: future directions, Mol. Diagn. Ther., 26, 483-495, https://doi.org/10.1007/s40291-022-00600-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amaral, D. G., Schumann, C. M., and Nordahl, C. W. (2008) Neuroanatomy of autism, Trends Neurosci., 31, 137-145, https://doi.org/10.1016/j.tins.2007.12.005.

    Article  CAS  PubMed  Google Scholar 

  10. Coleman, M. (2005) Advances in autism research, Dev. Med. Child Neurol., 47, 148-148, https://doi.org/10.1017/S0012162205000277.

    Article  PubMed  Google Scholar 

  11. Ecker, C., Bookheimer, S. Y., and Murphy, D. G. M. (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan, Lancet Neurol., 14, 1121-1134, https://doi.org/10.1016/S1474-4422(15)00050-2.

    Article  PubMed  Google Scholar 

  12. Lombardo, M. V., Lai, M.-C., and Baron-Cohen, S. (2019) Big data approaches to decomposing heterogeneity across the autism spectrum, Mol. Psychiatry, 24, 1435-1450, https://doi.org/10.1038/s41380-018-0321-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Masi, A., DeMayo, M. M., Glozier, N., and Guastella, A. J. (2017) An overview of autism spectrum disorder, heterogeneity and treatment options, Neurosci. Bull., 33, 183-193, https://doi.org/10.1007/s12264-017-0100-y.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., and Baird, G. (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample, J. Am. Acad. Child Adolesc. Psychiatry, 47, 921-929, https://doi.org/10.1097/CHI.0b013e318179964f.

    Article  PubMed  Google Scholar 

  15. Tang, S., Sun, N., Floris, D. L., Zhang, X., di Martino, A., and Yeo, B. T. T. (2020) Reconciling dimensional and categorical models of autism heterogeneity: a brain connectomics and behavioral study, Biol. Psychiatry, 87, 1071-1082, https://doi.org/10.1016/j.biopsych.2019.11.009.

    Article  PubMed  Google Scholar 

  16. Beversdorf, D. Q. (2016) Phenotyping, etiological factors, and biomarkers: toward precision medicine in autism spectrum disorders, J. Dev. Behav. Pediatr., 37, 659-673, https://doi.org/10.1097/DBP.0000000000000351.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mukaetova-Ladinska, E. B., Simashkova, N. V., Mukaetova, M. S., Ivanov, M. V., and Boksha, I. S. (2018) Autism spectrum disorders in children and adults: the experience of reserches from different countries, Zh. Nevrol. Psikhiatr. Im S. S. Korsakova, 118, 92, https://doi.org/10.17116/jnevro201811812192.

    Article  CAS  PubMed  Google Scholar 

  18. Hong, S.-J., Valk, S. L., di Martino, A., Milham, M. P., and Bernhardt, B. C. (2018) Multidimensional Neuroanatomical subtyping of autism spectrum disorder, Cerebral Cortex, 28, 3578-3588, https://doi.org/10.1093/cercor/bhx229.

    Article  PubMed  Google Scholar 

  19. Feczko, E., Balba, N. M., Miranda-Dominguez, O., Cordova, M., Karalunas, S. L., Irwin, L., Demeter, D. V., Hill, A. P., Langhorst, B. H., Grieser Painter, J., Van Santen, J., Fombonne, E. J., Nigg, J. T., and Fair, D. A. (2018) Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm, Neuroimage, 172, 674-688, https://doi.org/10.1016/j.neuroimage.2017.12.044.

    Article  CAS  PubMed  Google Scholar 

  20. Easson, A. K., Fatima, Z., and McIntosh, A. R. (2019) Functional connectivity-based subtypes of individuals with and without autism spectrum disorder, Netw. Neurosci., 3, 344-362, https://doi.org/10.1162/netn_a_00067.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Duffy, F. H., and Als, H. (2019) Autism, spectrum or clusters? An EEG coherence study, BMC Neurol., 19, 27, https://doi.org/10.1186/s12883-019-1254-1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tomchek, S. D., Little, L. M., Myers, J., and Dunn, W. (2018) Sensory subtypes in preschool aged children with autism spectrum disorder, J. Autism Dev. Disord., 48, 2139-2147, https://doi.org/10.1007/s10803-018-3468-2.

    Article  PubMed  Google Scholar 

  23. Simashkova, N. V., Klyushnik, T. P., and Yakupova, L. P. (2018) Clinical and biological approaches to the diagnostics and substantiation of personalized therapy in patients with autism spectrum disorders [in Russian], Psikhiatriya, 78, 17-24.

    Article  Google Scholar 

  24. McCracken, J. T., Anagnostou, E., Arango, C., Dawson, G., Farchione, T., Mantua, V., McPartland, J., Murphy, D., Pandina, G., and Veenstra-VanderWeele, J. (2021) Drug development for Autism Spectrum Disorder (ASD): progress, challenges, and future directions, Eur. Neuropsychopharmacol., 48, 3-31, https://doi.org/10.1016/j.euroneuro.2021.05.010.

    Article  CAS  PubMed  Google Scholar 

  25. Díaz-Caneja, C., State, M., Hagerman, R., Jacquemont, S., Marín, O., Bagni, C., Umbricht, D., Simonoff, E., de Andrés-Trelles, F., Kaale, A., Pandina, G., Gómez-Mancilla, B., Wang, P. P., Cusak, J., Siafis, S., Leucht, S., Parellada, M., Loth, E., Charman, T., Buitelaar, J. K., Murphy, D., and Arango, C. (2021) A white paper on a neurodevelopmental framework for drug discovery in autism and other neurodevelopmental disorders, Eur. Neuropsychopharmacol., 48, 49-88, https://doi.org/10.1016/j.euroneuro.2021.02.020.

    Article  CAS  PubMed  Google Scholar 

  26. Ristori, M. V., Mortera, S. L., Marzano, V., Guerrera, S., Vernocchi, P., Ianiro, G., Gardini, S., Torre, G., Valeri, G., Vicari, S., Gasbarrini, A., and Putignani, L. (2020) Proteomics and metabolomics approaches towards a functional insight onto AUTISM spectrum disorders: phenotype stratification and biomarker discovery, Int. J. Mol. Sci., 21, 6274, https://doi.org/10.3390/ijms21176274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klyushnik, T. P., Androsova, L. V., Simashkova, N. V., Zozulya, S. A., Otman, I. N., Shushpanova, O. V., and Brusov, O. S. (2016) Clinical and laboratory diagnosis of autism spectrum disorders in children, Lab. Sluzhba, 5, 22-27, https://doi.org/10.17116/labs20165222-27.

    Article  Google Scholar 

  28. Simashkova, N. V., Koval-Zaytsev, A. A., Ivanov, M. V., and Nikitina, S. G. (2021) Diagnostic, clinical, psychopathological, psychological aspects of the examination of children with autism spectrum disorders, Psikhiatriya, 19, 45-53, https://doi.org/10.30629/2618-6667-2021-19-1-45-53.

    Article  Google Scholar 

  29. Berry-Kravis, E. M., Harnett, M. D., Reines, S. A., Reese, M. A., Ethridge, L. E., Outterson, A. H., Michalak, C., Furman, J., and Gurney, M. E. (2021) Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial, Nat. Med., 27, 862-870, https://doi.org/10.1038/s41591-021-01321-w.

    Article  CAS  PubMed  Google Scholar 

  30. Lessard, M., Chouiali, A., Drouin, R., Sébire, G., and Corbin, F. (2012) Quantitative measurement of FMRP in blood platelets as a new screening test for fragile X syndrome, Clin. Genet., 82, 472-477, https://doi.org/10.1111/j.1399-0004.2011.01798.x.

    Article  CAS  PubMed  Google Scholar 

  31. Pellerin, D., Lortie, A., and Corbin, F. (2018) Platelets as a surrogate disease model of neurodevelopmental disorders: insights from fragile X syndrome, Platelets, 29, 113-124, https://doi.org/10.1080/09537104.2017.1317733.

    Article  CAS  PubMed  Google Scholar 

  32. Pellerin, D., Çaku, A., Fradet, M., Bouvier, P., Dubé, J., and Corbin, F. (2016) Lovastatin corrects ERK pathway hyperactivation in fragile X syndrome: potential of platelet’s signaling cascades as new outcome measures in clinical trials, Biomarkers, 21, 497-508, https://doi.org/10.3109/1354750X.2016.1160289.

    Article  CAS  PubMed  Google Scholar 

  33. Thurman, A. J., Potter, L. A., Kim, K., Tassone, F., Banasik, A., Potter, S. N., Bullard, L., Nguyen, V., McDuffie, A., Hagerman, R., and Abbeduto, L. (2020) Controlled trial of lovastatin combined with an open-label treatment of a parent-implemented language intervention in youth with fragile X syndrome, J. Neurodev. Disord., 12, 12, https://doi.org/10.1186/s11689-020-09315-4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou, M. S., Nasir, M., Farhat, L. C., Kook, M., Artukoglu, B. B., and Bloch, M. H. (2021) Meta-analysis: pharmacologic treatment of restricted and repetitive behaviors in autism spectrum disorders, J. Am. Acad. Child Adolesc. Psychiatry, 60, 35-45, https://doi.org/10.1016/j.jaac.2020.03.007.

    Article  PubMed  Google Scholar 

  35. Ramaekers, V. Th., Segers, K., Sequeira, J. M., Koenig, M., van Maldergem, L., Bours, V., Kornak, U., and Quadros, E. V. (2018) Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome, Mol. Genet. Metab., 124, 87-93, https://doi.org/10.1016/j.ymgme.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  36. Ramaekers, V. Th., and Quadros, E. V. (2022) Cerebral folate deficiency syndrome: early diagnosis, intervention and treatment strategies, Nutrients, 14, 3096, https://doi.org/10.3390/nu14153096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cario, H., Bode, H., Debatin, K.-M., Opladen, T., and Schwarz, K. (2009) Congenital null mutations of the FOLR1 gene: a progressive neurologic disease and its treatment, Neurology, 73, 2127-2129, https://doi.org/10.1212/WNL.0b013e3181c679df.

    Article  CAS  PubMed  Google Scholar 

  38. Ramaekers, V. T., Rothenberg, S. P., Sequeira, J. M., Opladen, T., Blau, N., Quadros, E. V., and Selhub, J. (2005) Autoantibodies to folate receptors in the cerebral folate deficiency syndrome, N. Engl. J. Med., 352, 1985-1991, https://doi.org/10.1056/NEJMoa043160.

    Article  CAS  PubMed  Google Scholar 

  39. Ramaekers, V. T., Sequeira, J. M., Thöny, B., and Quadros, E. V. (2020) Oxidative stress, folate receptor autoimmunity, and CSF findings in severe infantile autism, Autism Res. Treat., 2020, 1-14, https://doi.org/10.1155/2020/9095284.

    Article  Google Scholar 

  40. Frye, R. E., Sequeira, J. M., Quadros, E. V., James, S. J., and Rossignol, D. A. (2013) Cerebral folate receptor autoantibodies in autism spectrum disorder, Mol. Psychiatry, 18, 369-381, https://doi.org/10.1038/mp.2011.175.

    Article  CAS  PubMed  Google Scholar 

  41. Molloy, A. M., Quadros, E. V., Sequeira, J. M., Troendle, J. F., Scott, J. M., Kirke, P. N., and Mills, J. L. (2009) Lack of association between folate-receptor autoantibodies and neural-tube defects, N. Engl. J. Med., 361, 152-160, https://doi.org/10.1056/NEJMoa0803783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramaekers, V. T., Quadros, E. V., and Sequeira, J. M. (2013) Role of folate receptor autoantibodies in infantile autism, Mol. Psychiatry, 18, 270-271, https://doi.org/10.1038/mp.2012.22.

    Article  CAS  PubMed  Google Scholar 

  43. Renard, E., Leheup, B., Guéant-Rodriguez, R.-M., Oussalah, A., Quadros, E. V., and Guéant, J. L. (2020) Folinic acid improves the score of Autism in the EFFET placebo-controlled randomized trial, Biochimie, 173, 57-61, https://doi.org/10.1016/j.biochi.2020.04.019.

    Article  CAS  PubMed  Google Scholar 

  44. Quadros, E. V., Sequeira, J. M., Brown, W. T., Mevs, C., Marchi, E., Flory, M., Jenkins, E. C., Velinov, M. T., and Cohen, I. L. (2018) Folate receptor autoantibodies are prevalent in children diagnosed with autism spectrum disorder, their normal siblings and parents, Autism Res., 11, 707-712, https://doi.org/10.1002/aur.1934.

    Article  PubMed  Google Scholar 

  45. Frye, R. E., Slattery, J., Delhey, L., Furgerson, B., Strickland, T., Tippett, M., Sailey, A., Wynne, R., Rose, S., Melnyk, S., Jill James, S., Sequeira, J. M., and Quadros, E. V. (2018) Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial, Mol. Psychiatry, 23, 247-256, https://doi.org/10.1038/mp.2016.168.

    Article  CAS  PubMed  Google Scholar 

  46. Rossignol, D. A., and Frye, R. E. (2021) Cerebral folate deficiency, folate receptor alpha autoantibodies and leucovorin (Folinic Acid) treatment in autism spectrum disorders: a systematic review and meta-analysis, J. Pers. Med., 11, 1141, https://doi.org/10.3390/jpm11111141.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frye, R. E., Rossignol, D. A., Scahill, L., McDougle, C. J., Huberman, H., and Quadros, E. V. (2020) Treatment of folate metabolism abnormalities in autism spectrum disorder, Semin. Pediatr. Neurol., 35, 100835, https://doi.org/10.1016/j.spen.2020.100835.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rossignol, D. A., and Frye, R. E. (2012) Substantial problems with measuring brain mitochondrial dysfunction in autism spectrum disorder using magnetic resonance spectroscopy, J. Autism Dev. Disord., 42, 640-642, https://doi.org/10.1007/s10803-011-1276-z.

    Article  PubMed  Google Scholar 

  49. Desai, A., Sequeira, J. M., and Quadros, E. V. (2016) The metabolic basis for developmental disorders due to defective folate transport, Biochimie, 126, 31-42, https://doi.org/10.1016/j.biochi.2016.02.012.

    Article  CAS  PubMed  Google Scholar 

  50. Shoffner, J., Trommer, B., Thurm, A., Farmer, C., Langley, W. A., Soskey, L., Rodriguez, A. N., D’Souza, P., Spence, S. J., Hyland, K., and Swedo, S. E. (2016) CSF concentrations of 5-methyltetrahydrofolate in a cohort of young children with autism, Neurology, 86, 2258-2263, https://doi.org/10.1212/WNL.0000000000002766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bent, S., Chen, Y., McDonald, M. G., Widjaja, F., Wahlberg, J., and Hendren, R. L. (2020) An examination of changes in urinary metabolites and behaviors with the use of leucovorin calcium in children with autism spectrum disorder (ASD), Adv. Neurodev. Disord., 4, 241-246, https://doi.org/10.1007/s41252-020-00157-8.

    Article  Google Scholar 

  52. Watanabe, T., Abe, O., Kuwabara, H., Yahata, N., Takano, Y., Iwashiro, N., Natsubori, T., Aoki, Y., Takao, H., Kawakubo, Y., Kamio, Y., Kato, N., Miyashita, Y., Kasai, K., and Yamasue, H. (2014) Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity, JAMA Psychiatry, 71, 166, https://doi.org/10.1001/jamapsychiatry.2013.3181.

    Article  PubMed  Google Scholar 

  53. King, L. B., Walum, H., Inoue, K., Eyrich, N. W., and Young, L. J. (2016) Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment, Biol. Psychiatry, 80, 160-169, https://doi.org/10.1016/j.biopsych.2015.12.008.

    Article  CAS  PubMed  Google Scholar 

  54. Green, L., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L., and Morris, M. (2001) Oxytocin and autistic disorder: alterations in peptide forms, Biol. Psychiatry, 50, 609-613, https://doi.org/10.1016/S0006-3223(01)01139-8.

    Article  CAS  PubMed  Google Scholar 

  55. Wu, S., Jia, M., Ruan, Y., Liu, J., Guo, Y., Shuang, M., Gong, X., Zhang, Y., Yang, X., and Zhang, D. (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population, Biol. Psychiatry, 58, 74-77, https://doi.org/10.1016/j.biopsych.2005.03.013.

    Article  CAS  PubMed  Google Scholar 

  56. Jacob, S., Brune, C. W., Carter, C. S., Leventhal, B. L., Lord, C., and Cook, E. H. (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism, Neurosci. Lett., 417, 6-9, https://doi.org/10.1016/j.neulet.2007.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yrigollen, C. M., Han, S. S., Kochetkova, A., Babitz, T., Chang, J. T., Volkmar, F. R., Leckman, J. F., and Grigorenko, E. L. (2008) Genes controlling affiliative behavior as candidate genes for autism, Biol. Psychiatry, 63, 911-916, https://doi.org/10.1016/j.biopsych.2007.11.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Andari, E., Duhamel, J.-R., Zalla, T., Herbrecht, E., Leboyer, M., and Sirigu, A. (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders, Proc. Natl. Acad. Sci. USA, 107, 4389-4394, https://doi.org/10.1073/pnas.0910249107.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu, X., Kawamura, Y., Shimada, T., Otowa, T., Koishi, S., Sugiyama, T., Nishida, H., Hashimoto, O., Nakagami, R., Tochigi, M., Umekage, T., Kano, Y., Miyagawa, T., Kato, N., Tokunaga, K., and Sasaki, T. (2010) Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population, J. Hum. Genet., 55, 137-141, https://doi.org/10.1038/jhg.2009.140.

    Article  CAS  PubMed  Google Scholar 

  60. Tansey, K. E., Brookes, K. J., Hill, M. J., Cochrane, L. E., Gill, M., Skuse, D., Correia, C., Vicente, A., Kent, L., Gallagher, L., and Anney, R. J. L. (2010) Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: Genetic and molecular studies, Neurosci. Lett., 474, 163-167, https://doi.org/10.1016/j.neulet.2010.03.035.

    Article  CAS  PubMed  Google Scholar 

  61. Wermter, A.-K., Kamp-Becker, I., Hesse, P., Schulte-Körne, G., Strauch, K., and Remschmidt, H. (2010) Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level, Am. J. Med. Genet. B Neuropsychiatr. Genet., 153B, 629-639, https://doi.org/10.1002/ajmg.b.31032.

    Article  CAS  PubMed  Google Scholar 

  62. Campbell, D. B., Datta, D., Jones, S. T., Batey Lee, E., Sutcliffe, J. S., Hammock, E. A., and Levitt, P. (2011) Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder, J. Neurodev. Disord., 3, 101-112, https://doi.org/10.1007/s11689-010-9071-2.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Al-Ali, Z., Yasseen, A. A., Al-Dujailli, A., Al-Karaqully, A. J., McAllister, K. A., and Jumaah, A. S. (2022) The oxytocin receptor gene polymorphism rs2268491 and serum oxytocin alterations are indicative of autism spectrum disorder: A case-control paediatric study in Iraq with personalized medicine implications, PLoS One, 17, e0265217, https://doi.org/10.1371/journal.pone.0265217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gregory, S. G., Connelly, J. J., Towers, A. J., Johnson, J., Biscocho, D., Markunas, C. A., Lintas, C., Abramson, R. K., Wright, H. H., Ellis, P., Langford, C. F., Worley, G., Delong, G. R., Murphy, S. K., Cuccaro, M. L., Persico, A., and Pericak-Vance, M. A. (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism, BMC Med., 7, 62, https://doi.org/10.1186/1741-7015-7-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grieb, Z. A., and Lonstein, J. S. (2022) Oxytocin interactions with central dopamine and serotonin systems regulate different components of motherhood, Philos. Trans. R. Soc. Lond. B Biol. Sci., 377, 20210062, https://doi.org/10.1098/rstb.2021.0062.

    Article  PubMed  Google Scholar 

  66. Borie, A. M., Young, L. J., and Liu, R. C. (2022) Sex-specific and social experience-dependent oxytocin-endocannabinoid interactions in the nucleus accumbens: implications for social behavior, Philos Trans R. Soc Lond B Biol Sci., 377, 20210057, https://doi.org/10.1098/rstb.2021.0057.

    Article  PubMed  Google Scholar 

  67. Putnam, P. T., and Chang, S. W. C. (2022) Interplay between the oxytocin and opioid systems in regulating social behavior, Philos. Trans. R. Soc. Lond. B Biol. Sci., 377, 20210050, https://doi.org/10.1098/rstb.2021.0050.

    Article  PubMed  Google Scholar 

  68. Moerkerke, M., Peeters, M., de Vries, L., Daniels, N., Steyaert, J., Alaerts, K., and Boets, B. (2021) Endogenous oxytocin levels in autism a meta-analysis, Brain Sci., 11, 1545, https://doi.org/10.3390/brainsci11111545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rokicki, J., Kaufmann, T., de Lange, A. G., van der Meer, D., Bahrami, S., Sartorius, A. M., Haukvik, U. K., Steen, N. E., Schwarz, E., Stein, D. J., Nærland, T., Andreassen, O. A., Westlye, L. T., and Quintana, D. S. (2022) Oxytocin receptor expression patterns in the human brain across development, Neuropsychopharmacology, 47, 1550-1560, https://doi.org/10.1038/s41386-022-01305-5.

    Article  CAS  PubMed  Google Scholar 

  70. Parker, K. J., Oztan, O., Libove, R. A., Mohsin, N., Karhson, D. S., Sumiyoshi, R. D., Summers, J. E., Hinman, K. E., Motonaga, K. S., Phillips, J. M., Carson, D. S., Fung, L. K., Garner, J. P., and Hardan, A. Y. (2019) A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism, Sci. Transl. Med., 11, eaau7356, https://doi.org/10.1126/scitranslmed.aau7356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alaerts, K., Steyaert, J., Vanaudenaerde, B., Wenderoth, N., and Bernaerts, S. (2021) Changes in endogenous oxytocin levels after intranasal oxytocin treatment in adult men with autism: An exploratory study with long-term follow-up, Eur. Neuropsychopharmacol., 43, 147-152, https://doi.org/10.1016/j.euroneuro.2020.11.014.

    Article  CAS  PubMed  Google Scholar 

  72. Winterton, A., Westlye, L. T., Steen, N. E., Andreassen, O. A., and Quintana, D. S. (2021) Improving the precision of intranasal oxytocin research, Nat Hum Behav., 5, 9-18, https://doi.org/10.1038/s41562-020-00996-4.

    Article  PubMed  Google Scholar 

  73. Spanos, M., Chandrasekhar, T., Kim, S.-J., Hamer, R. M., King, B. H., McDougle, C. J., Sanders, K. B., Gregory, S. G., Kolevzon, A., Veenstra-VanderWeele, J., and Sikich, L. (2020) Rationale, design, and methods of the Autism Centers of Excellence (ACE) network study of oxytocin in autism to improve reciprocal social behaviors (SOARS-B), Contemp. Clin. Trials, 98, 106103, https://doi.org/10.1016/j.cct.2020.106103.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Erdman, S. E., and Poutahidis, T. (2016) Microbes and oxytocin: benefits for host physiology and behavior, Int. Rev. Neurobiol., 131, 91-126, https://doi.org/10.1016/bs.irn.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  75. Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., and Costa-Mattioli, M. (2019) Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder, Neuron, 101, 246-259, https://doi.org/10.1016/j.neuron.2018.11.018.

    Article  CAS  PubMed  Google Scholar 

  76. Huang, M., Liu, K., Wei, Z., Feng, Z., Chen, J., Yang, J., Zhong, Q., Wan, G., and Kong, X. J. (2021) Serum oxytocin level correlates with gut microbiome dysbiosis in children with autism spectrum disorder, Front. Neurosci., 15, 721884, https://doi.org/10.3389/fnins.2021.721884.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oztan, O., Garner, J. P., Partap, S., Sherr, E. H., Hardan, A. Y., Farmer, C., Thurm, A., Swedo, S. E., and Parker, K. J. (2018) Cerebrospinal fluid vasopressin and symptom severity in children with autism, Ann. Neurol., 84, 611-615, https://doi.org/10.1002/ana.25314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Carson, D. S., Garner, J. P., Hyde, S. A., Libove, R. A., Berquist, S. W., Hornbeak, K. B., Jackson, L. P., Sumiyoshi, R. D., Howerton, C. L., Hannah, S. L., Partap, S., Phillips, J. M., Hardan, A. Y., and Parker, K. J. (2015) Arginine vasopressin is a blood-based biomarker of social functioning in children with autism, PLoS One, 10, e0132224, https://doi.org/10.1371/journal.pone.0132224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parker, K. J. (2022) Leveraging a translational research approach to drive diagnostic and treatment advances for autism, Mol. Psychiatry, 27, 2650-2658, https://doi.org/10.1038/s41380-022-01532-8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Port, R. G., Oberman, L. M., and Roberts, T. P. (2019) Revisiting the excitation/inhibition imbalance hypothesis of ASD through a clinical lens, Br. J. Radiol., 92, 20180944, https://doi.org/10.1259/bjr.20180944.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hassan, T. H., Abdelrahman, H. M., Abdel Fattah, N. R., El-Masry, N. M., Hashim, H. M., El-Gerby, K. M., and Abdel Fattah, N. R. (2013) Blood and brain glutamate levels in children with autistic disorder, Res. Autism Spectr. Disord., 7, 541-548, https://doi.org/10.1016/j.rasd.2012.12.005.

    Article  Google Scholar 

  82. Zhang, L., Huang, C. C., Dai, Y., Luo, Q., Ji, Y., Wang, K., Deng, S., Yu, J., Xu, M., Du, X., Tang, Y., Shen, C., Feng, J., Sahakian, B. J., Lin, C. P., and Li, F. (2020) Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios, Transl. Psychiatry, 10, 9, https://doi.org/10.1038/s41398-020-0692-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McCracken, J. T. (2018) Target engagement of AZD7325 in Adults with ASD, J. Am Acad Child Adolesc Psychiatry, 57, S287, https://doi.org/10.1016/j.jaac.2018.07.683.

    Article  Google Scholar 

  84. Ajram, L. A., Horder, J., Mendez, M. A., Galanopoulos, A., Brennan, L. P., Wichers, R. H., Robertson, D. M., Murphy, C. M., Zinkstok, J., Ivin, G., Heasman, M., Meek, D., Tricklebank, M. D., Barker, G. J., Lythgoe, D. J., Edden, R. A. E., Williams, S. C., Murphy, D. G. M., and McAlonan, G. M. (2017) Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder, Transl. Psychiatry, 7, e1137, https://doi.org/10.1038/tp.2017.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grabb, M. C., Cross, A. J., Potter, W. Z., and McCracken, J. T. (2016) Derisking psychiatric drug development: The NIMH’s fast fail program, a novel precompetitive model, J. Clin. Psychopharmacol., 36, 419-421, https://doi.org/10.1097/JCP.0000000000000536.

    Article  PubMed  PubMed Central  Google Scholar 

  86. De Stefano, L. A., Schmitt, L. M., White, S. P., Mosconi, M. W., Sweeney, J. A., and Ethridge, L. E. (2019) Developmental effects on auditory neural oscillatory synchronization abnormalities in autism spectrum disorder, Front. Integr. Neurosci., 13, 34, https://doi.org/10.3389/fnint.2019.00034.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bromander, S., Anckarsäter, R., Kristiansson, M., Blennow, K., Zetterberg, H., Anckarsäter, H., and Wass, C. E. (2012) Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: an observational study, J. Neuroinflammation, 9, 758, https://doi.org/10.1186/1742-2094-9-242.

    Article  CAS  Google Scholar 

  88. Pardo, C. A., Farmer, C. A., Thurm, A., Shebl, F. M., Ilieva, J., Kalra, S., and Swedo, S. (2017) Serum and cerebrospinal fluid immune mediators in children with autistic disorder: a longitudinal study, Mol. Autism, 8, 1, https://doi.org/10.1186/s13229-016-0115-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., and Pardo, C. A. (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism, Ann. Neurol., 57, 67-81, https://doi.org/10.1002/ana.20315.

    Article  CAS  PubMed  Google Scholar 

  90. Estes, M. L., and McAllister, A. K. (2015) Immune mediators in the brain and peripheral tissues in autism spectrum disorder, Nat. Rev. Neurosci., 16, 469-486, https://doi.org/10.1038/nrn3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, Q., Zhang, L., Shan, H., Yu, J., Dai, Y., He, H., Li, W. G., Langley, C., Sahakian, B. J., Yao, Y., Luo, Q., and Li, F. (2022) The immuno-behavioural covariation associated with the treatment response to bumetanide in young children with autism spectrum disorder, Transl. Psychiatry, 12, 228, https://doi.org/10.1038/s41398-022-01987-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., Ji, L., Brown, T., and Malik, M. (2009) Elevated immune response in the brain of autistic patients, J. Neuroimmunol., 207, 111-116, https://doi.org/10.1016/j.jneuroim.2008.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod-Mobarakeh, A., and Rezaei, N. (2019) A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: effects of age, gender, and latitude, J. Psychiatr. Res., 115, 90-102, https://doi.org/10.1016/j.jpsychires.2019.05.019.

    Article  PubMed  Google Scholar 

  94. Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., Altaye, M., and Wills-Karp, M. (2006) Elevated cytokine levels in children with autism spectrum disorder, J. Neuroimmunol., 172, 198-205, https://doi.org/10.1016/j.jneuroim.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  95. Resta-Lenert, S., and Barrett, K. E. (2006) Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells, Gastroenterology, 130, 731-746, https://doi.org/10.1053/j.gastro.2005.12.015.

    Article  CAS  PubMed  Google Scholar 

  96. Bertelsen, L. S., Eckmann, L., and Barrett, K. E. (2004) Prolonged interferon-γ exposure decreases ion transport, NKCC1, and Na+-K+-ATPase expression in human intestinal xenografts in vivo, Am. J. Physiol. Gastrointest. Liver Physiol., 286, G157-G165, https://doi.org/10.1152/ajpgi.00227.2003.

    Article  CAS  PubMed  Google Scholar 

  97. Sharp, T., and Barnes, N. M. (2020) Central 5-HT receptors and their function; present and future, Neuropharmacology, 177, 108155, https://doi.org/10.1016/j.neuropharm.2020.108155.

    Article  CAS  PubMed  Google Scholar 

  98. Rose’Meyer, R. (2013) A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders, Mol. Autism, 4, 37, https://doi.org/10.1186/2040-2392-4-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Andersson, M., Tangen, Ä., Farde, L., Bölte, S., Halldin, C., Borg, J., and Lundberg, J. (2021) Serotonin transporter availability in adults with autism – a positron emission tomography study, Mol. Psychiatry, 26, 1647-1658, https://doi.org/10.1038/s41380-020-00868-3.

    Article  CAS  PubMed  Google Scholar 

  100. Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., McCauley, J. L., Han, Q., Jiang, L., Li, C., Folstein, S. E., and Blakely, R. D. (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors, Am. J. Hum. Genet., 77, 265-279, https://doi.org/10.1086/432648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adamsen, D., Ramaekers, V., Ho, H. T., Britschgi, C., Rüfenacht, V., Meili, D., Bobrowski, E., Philippe, P., Nava, C., Van Maldergem, L., Bruggmann, R., Walitza, S., Wang, J., Grünblatt, E., and Thöny, B. (2014) Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene, Mol. Autism, 5, 43, https://doi.org/10.1186/2040-2392-5-43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Murphy, D. G., Daly, E., Schmitz, N., Toal, F., Murphy, K., Curran, S., Erlandsson, K., Eersels, J., Kerwin, R., Ell, P., and Travis, M. (2006) Cortical serotonin 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: an in vivo SPECT study, Am. J. Psychiatry, 163, 934-936, https://doi.org/10.1176/ajp.2006.163.5.934.

    Article  PubMed  Google Scholar 

  103. Makkonen, I., Riikonen, R., Kokki, H., Airaksinen, M. M., and Kuikka, J. T. (2008) Serotonin and dopamine transporter binding in children with autism determined by SPECT, Dev. Med. Child Neurol., 50, 593-597, https://doi.org/10.1111/j.1469-8749.2008.03027.x.

    Article  PubMed  Google Scholar 

  104. Goldberg, J., Anderson, G. M., Zwaigenbaum, L., Hall, G. B., Nahmias, C., Thompson, A., and Szatmari, P. (2009) Cortical serotonin type-2 receptor density in parents of children with autism spectrum disorders, J. Autism Dev. Disord., 39, 97-104, https://doi.org/10.1007/s10803-008-0604-4.

    Article  PubMed  Google Scholar 

  105. Beversdorf, D. Q., Nordgren, R. E., Bonab, A. A., Fischman, A. J., Weise, S. B., Dougherty, D. D., Felopulos, G. J., Zhou, F. C., and Bauman, M. L. (2012) 5-HT2 receptor distribution shown by [18F] setoperone PET in high-functioning autistic adults, J. Neuropsychiatry Clin. Neurosci., 24, 191-197, https://doi.org/10.1176/appi.neuropsych.11080202.

    Article  CAS  PubMed  Google Scholar 

  106. Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Tsuchiya, K. J., Sugihara, G., Iwata, Y., Suzuki, K., Matsuzaki, H., Suda, S., Sugiyama, T., Takei, N., and Mori, N. (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism, Arch. Gen. Psychiatry, 67, 59, https://doi.org/10.1001/archgenpsychiatry.2009.137.

    Article  CAS  PubMed  Google Scholar 

  107. Chugani, D. C., Muzik, O., Behen, M., Rothermel, R., Janisse, J. J., Lee, J., and Chugani, H. T. (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children, Ann. Neurol., 45, 287-295, https://doi.org/10.1002/1531-8249(199903)45:3<287::aid-ana3>3.0.co;2-9.

    Article  CAS  PubMed  Google Scholar 

  108. Chen, R., Davis, L. K., Guter, S., Wei, Q., Jacob, S., Potter, M. H., Cox, N. J., Cook, E. H., Sutcliffe, J. S., and Li, B. (2017) Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism, Mol. Autism, 8, 14, https://doi.org/10.1186/s13229-017-0130-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gabriele, S., Sacco, R., and Persico, A. M. (2014) Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis, Eur. Neuropsychopharmacol., 24, 919-929, https://doi.org/10.1016/j.euroneuro.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  110. Wichers, R. H., Findon, J. L., Jelsma, A., Giampietro, V., Stoencheva, V., Robertson, D. M., Murphy, C. M., Blainey, S., McAlonan, G., Ecker, C., Rubia, K., Murphy, D. G. M., and Daly, E. M. (2021) Modulation of atypical brain activation during executive functioning in autism: a pharmacological MRI study of tianeptine, Mol. Autism, 12, 14, https://doi.org/10.1186/s13229-021-00422-0.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Israelyan, N., and Margolis, K. G. (2018) Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders, Pharmacol. Res., 132, 1-6, https://doi.org/10.1016/j.phrs.2018.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mulder, E. J., Anderson, G. M., Kemperman, R. F. J., Oosterloo-Duinkerken, A., Minderaa, R. B., and Kema, I. P. (2010) Urinary excretion of 5-hydroxyindoleacetic acid, serotonin and 6-sulphatoxymelatonin in normoserotonemic and hyperserotonemic autistic individuals, Neuropsychobiology, 61, 27-32, https://doi.org/10.1159/000258640.

    Article  CAS  PubMed  Google Scholar 

  113. Zuniga-Kennedy, M., Davoren, M., Shuffrey, L. C., Luna, R. A., Savidge, T., Prasad, V., Anderson, G. M., Veenstra-VanderWeele, J., and Williams, K. C. (2022) Intestinal predictors of whole blood serotonin levels in children with or without autism, J. Autism Dev. Disord., 52, 3780-3789, https://doi.org/10.1007/s10803-022-05597-w.

    Article  PubMed  Google Scholar 

  114. Robson, M. J., Quinlan, M. A., Margolis, K. G., Gajewski-Kurdziel, P. A., Veenstra-VanderWeele, J., Gershon, M. D., Watterson, D. M., and Blakely, R. D. (2018) p38α MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse, Proc. Natl. Acad. Sci. USA, 115, E10245-E10254, https://doi.org/10.1073/pnas.1809137115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Daly, E., Ecker, C., Hallahan, B., Deeley, Q., Craig, M., Murphy, C., Johnston, P., Spain, D., Gillan, N., Gudbrandsen, M., Brammer, M., Giampietro, V., Lamar, M., Page, L., Toal, F., Schmitz, N., Cleare, A., Robertson, D., Rubia, K., and Murphy, D. G. (2014) Response inhibition and serotonin in autism: a functional MRI study using acute tryptophan depletion, Brain, 137, 2600-2610, https://doi.org/10.1093/brain/awu178.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Boccuto, L., Chen, C. F., Pittman, A. R., Skinner, C. D., McCartney, H. J., Jones, K., Bochner, B. R., Stevenson, R. E., and Schwartz, C. E. (2013) Decreased tryptophan metabolism in patients with autism spectrum disorders, Mol. Autism, 4, 16, https://doi.org/10.1186/2040-2392-4-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Migliarini, S., Pacini, G., Pelosi, B., Lunardi, G., and Pasqualetti, M. (2013) Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation, Mol. Psychiatry, 18, 1106-1118, https://doi.org/10.1038/mp.2012.128.

    Article  CAS  PubMed  Google Scholar 

  118. Agus, A., Planchais, J., and Sokol, H. (2018) Gut microbiota regulation of tryptophan metabolism in health and disease, Cell Host Microbe, 23, 716-724, https://doi.org/10.1016/j.chom.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  119. Tang, W., Zhu, H., Feng, Y., Guo, R., and Wan, D. (2020) The impact of gut microbiota disorders on the blood-brain barrier, Infect. Drug Resist., 13, 3351-3363, https://doi.org/10.2147/IDR.S254403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Luo, Y., Eran, A., Palmer, N., Avillach, P., Levy-Moonshine, A., Szolovits, P., and Kohane, I. S. (2020) A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia, Nat. Med., 26, 1375-1379, https://doi.org/10.1038/s41591-020-1007-0.

    Article  CAS  PubMed  Google Scholar 

  121. Sikora, D. M., Pettit-Kekel, K., Penfield, J., Merkens, L. S., and Steiner, R. D. (2006) The near universal presence of autism spectrum disorders in children with Smith–Lemli–Opitz syndrome, Am. J. Med. Genet. A, 140, 1511-1518, https://doi.org/10.1002/ajmg.a.31294.

    Article  PubMed  Google Scholar 

  122. Gong, H., Dong, W., Rostad, S. W., Marcovina, S. M., Albers, J. J., Brunzell, J. D., and Vuletic, S. (2013) Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer’s disease brains, J. Histochem. Cytochem., 61, 857-868, https://doi.org/10.1369/0022155413505601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Beffert, U., Stolt, P. C., and Herz, J. (2004) Functions of lipoprotein receptors in neurons, J. Lipid Res., 45, 403-409, https://doi.org/10.1194/jlr.R300017-JLR200.

    Article  CAS  PubMed  Google Scholar 

  124. Kysenius, K., Muggalla, P., Mätlik, K., Arumäe, U., and Huttunen, H. J. (2012) PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling, Cell. Mol. Life Sci., 69, 1903-1916, https://doi.org/10.1007/s00018-012-0977-6.

    Article  CAS  PubMed  Google Scholar 

  125. Buchovecky, C. M., Turley, S. D., Brown, H. M., Kyle, S. M., McDonald, J. G., Liu, B., Pieper, A. A., Huang, W., Katz, D. M., Russell, D. W., Shendure, J., and Justice, M. J. (2013) A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome, Nat. Genet., 45, 1013-1020, https://doi.org/10.1038/ng.2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tierney, E., Remaley, A. T., Thurm, A., Jager, L. R., Wassif, C. A., Kratz, L. E., Bailey-Wilson, J. E., Bukelis, I., Sarphare, G., Jung, E. S., Brand, B., Noah, K. K., and Porter, F. D. (2021) Sterol and lipid analyses identifies hypolipidemia and apolipoprotein disorders in autism associated with adaptive functioning deficits, Transl. Psychiatry, 11, 471, https://doi.org/10.1038/s41398-021-01580-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Frye, R. E. (2020) Mitochondrial dysfunction in autism spectrum disorder: unique abnormalities and targeted treatments, Semin. Pediatr. Neurol., 35, 100829, https://doi.org/10.1016/j.spen.2020.100829.

    Article  PubMed  Google Scholar 

  128. Oliveira, G., Ataíde, A., Marques, C., Miguel, T. S., Coutinho, A. M., Mota-Vieira, L., Gonçalves, E., Lopes, N. M., Rodrigues, V., Carmona da Mota, H., and Vicente, A. M. (2007) Epidemiology of autism spectrum disorder in Portugal: prevalence, clinical characterization, and medical conditionsm, Dev. Med. Child Neurol., 49, 726-733, https://doi.org/10.1111/j.1469-8749.2007.00726.x.

    Article  PubMed  Google Scholar 

  129. Demarquoy, C., and Demarquoy, J. (2019) Autism and carnitine: A possible link, World J. Biol. Chem., 10, 7-16, https://doi.org/10.4331/wjbc.v10.i1.7.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Fahmy, S. F., El-Hamamsy, M., Zaki, O., and Badary, O. A. (2013) Effect of L-carnitine on behavioral disorder in autistic children, Value Health, 16, A15, https://doi.org/10.1016/j.jval.2013.03.092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I. S. Boksha, development of the concept and writing the article; T. A. Prokhorova, analysis of the literature and writing the article text; O. K. Savushkina, selection and analysis of the literature; E. B. Tereshkina, selection of the literature and editing the article text; G. Sh. Burbaeva, revision of the critically important intellectual content and final approval of the article.

Corresponding author

Correspondence to Irina S. Boksha.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boksha, I.S., Prokhorova, T.A., Tereshkina, E.B. et al. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. Biochemistry Moscow 88, 303–318 (2023). https://doi.org/10.1134/S0006297923030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923030021

Keywords

Navigation