Skip to main content
Log in

The Role of C1473G Polymorphism in Mouse Triptophan Hydroxylase 2 Gene in the Acute Effects of Ethanol on the c-fos Gene Expression and Metabolism of Biogenic Amines in the Brain

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tryptophan hydroxylase 2 is a key enzyme in the synthesis of the neurotransmitter serotonin, which plays an important role in the regulation of behavior and various physiological functions. We studied the effect of acute ethanol administration on the expression of the early response c-fos gene and metabolism of serotonin and catecholamines in the brain structures of B6-1473C and B6-1473G congenic mouse strains differing in the single-nucleotide substitution C1473G in the Tph2 gene and activity of the encoded enzyme. Acute alcoholization led to a significant upregulation of the c-fos gene expression in the frontal cortex and striatum of B6-1473G mice and in the hippocampus of B6-1473C mice and caused a decrease in the index of serotonin metabolism in the nucleus accumbens in B6-1473C mice and in the hippocampus and striatum of B6-1473G mice, as well as to the decrease in the norepinephrine level in the hypothalamus of B6-1473C mice. Therefore, the C1473G polymorphism in the Tph2 gene has a significant effect of acute ethanol administration on the c-fos expression pattern and metabolism of biogenic amines in the mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

5-HT:

serotonin

DA:

dopamine

DOPAC:

3,4-dihydroxyphenylacetic acid

HVA:

homovanillic acid

NE:

norepinephrine

TPH2:

tryptophan hydroxylase

References

  1. Sari, Y., Johnson, V. R., and Weedman, J. M. (2011) Role of the serotonergic system in alcohol dependence: from animal models to clinics, Prog. Mol. Biol. Transl. Sci., 98, 401-443, https://doi.org/10.1016/B978-0-12-385506-0.00010-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marcinkiewcz, C. A. (2015) Serotonergic systems in the pathophysiology of ethanol dependence: relevance to clinical alcoholism, ACS Chem. Neurosci., 6, 1026-1039, https://doi.org/10.1021/cn5003573.

    Article  CAS  PubMed  Google Scholar 

  3. Lappalainen, J., Long, J. C., Eggert, M., Ozaki, N., Robin, R. W., Brown, G. L., Naukkarinen, H., Virkkunen, M., Linnoila, M., and Goldman, D. (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations, Arch. Gen. Psychiatry, 55, 989-994, https://doi.org/10.1001/archpsyc.55.11.989.

    Article  CAS  PubMed  Google Scholar 

  4. Bonasera, S. J., Chu, H. M., Brennan, T. J., and Tecott, L. H. (2006) A null mutation of the serotonin 6 receptor alters acute responses to ethanol, Neuropsychopharmacology, 31, 1801-1813, https://doi.org/10.1038/sj.npp.1301030.

    Article  CAS  PubMed  Google Scholar 

  5. Wrzosek, M., Jakubczyk, A., Wrzosek, M., Matsumoto, H., Łukaszkiewicz, J., Brower, K. J., and Wojnar, M. (2012) Serotonin 2A receptor gene (HTR2A) polymorphism in alcohol-dependent patients, Pharmacol. Rep., 64, 449-453, https://doi.org/10.1016/s1734-1140(12)70787-9.

    Article  CAS  PubMed  Google Scholar 

  6. Boyce-Rustay, J. M., Wiedholz, L. M., Millstein, R. A., Carroll, J., Murphy, D. L., Daws, L. C., and Holmes, A. (2006) Ethanol-related behaviors in serotonin transporter knockout mice, Alcohol. Clin. Exp. Res., 30, 1957-1965, https://doi.org/10.1111/j.1530-0277.2006.00241.x.

    Article  CAS  PubMed  Google Scholar 

  7. Popova, N. K., Vishnivetskaya, G. B., Ivanova, E. A., Skrinskaya, J. A., and Seif, I. (2000) Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline, Pharmacol. Biochem. Behav., 67, 719-727, https://doi.org/10.1016/s0091-3057(00)00417-2.

    Article  CAS  PubMed  Google Scholar 

  8. Kulikova, E. A., and Kulikov, A. V. (2019) Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models, Expert. Opin. Ther. Targets, 23, 655-667, https://doi.org/10.1080/14728222.2019.1634691.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X., Gainetdinov, R. R., Beaulieu, J. M., Sotnikova, T. D., Burch, L. H., Williams, R. B., Schwartz, D. A., Krishnan, K. R., and Caron, M. G. (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression, Neuron, 45, 11-16, https://doi.org/10.1016/j.neuron.2004.12.014.

    Article  CAS  PubMed  Google Scholar 

  10. Bach, H., Arango, V., Kassir, S. A., Tsaava, T., Dwork, A. J., Mann, J. J., and Underwood, M. D. (2014) Alcoholics have more tryptophan hydroxylase 2 mRNA and protein in the dorsal and median raphe nuclei, Alcohol. Clin. Exp. Res., 38, 1894-1901, https://doi.org/10.1111/acer.12414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zupanc, T., Pregelj, P., Tomori, M., Komel, R., and Paska, A. V. (2011) TPH2 polymorphisms and alcohol-related suicide, Neurosci. Lett., 490, 78-81, https://doi.org/10.1016/j.neulet.2010.12.030.

    Article  CAS  PubMed  Google Scholar 

  12. Bragatti, J. A., Bandeira, I. C., de Carvalho, A. M., Abujamra, A. L., Leistner-Segal, S., and Bianchin, M. M. (2014) Tryptophan hydroxylase 2 (TPH2) gene polymorphisms and psychiatric comorbidities in temporal lobe epilepsy, Epilepsy Behav., 32, 59-63, https://doi.org/10.1016/j.yebeh.2014.01.007.

    Article  PubMed  Google Scholar 

  13. Zill, P., Preuss, U. W., Koller, G., Bondy, B., and Soyka, M. (2007) SNP- and haplotype analysis of the tryptophan hydroxylase 2 gene in alcohol-dependent patients and alcohol-related suicide, Neuropsychopharmacology, 32, 1687-1694, https://doi.org/10.1038/sj.npp.1301318.

    Article  CAS  PubMed  Google Scholar 

  14. Gacek, P., Conner, T. S., Tennen, H., Kranzler, H. R., and Covault, J. (2008) Tryptophan hydroxylase 2 gene and alcohol use among college students, Addict. Biol., 13, 440-448, https://doi.org/10.1111/j.1369-1600.2008.00118.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, X., Beaulieu, J. M., Sotnikova, T. D., Gainetdinov, R. R., and Caron, M. G. (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis, Science, 305, 217, https://doi.org/10.1126/science.1097540.

    Article  CAS  PubMed  Google Scholar 

  16. Osipova, D. V., Kulikov, A. V., and Popova, N. K. (2009) C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test, J. Neurosci. Res., 87, 1168-1174, https://doi.org/10.1002/jnr.21928.

    Article  CAS  PubMed  Google Scholar 

  17. Bazhenova, E. Y., Bazovkina, D. V., Kulikova, E. A., Fursenko, D. V., Khotskin, N. V., Lichman, D. V., and Kulikov, A. V. (2017) C1473G polymorphism in mouse tryptophan hydroxylase-2 gene in the regulation of the reaction to emotional stress, Neurosci. Lett., 640, 105-110, https://doi.org/10.1016/j.neulet.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  18. Bazhenova, E. Y., Fursenko, D. V., Kulikova, E. A., Khotskin, N. V., Sinyakova, N. A., and Kulikov, A. V. (2019) Effect of photoperiodic alterations on depression-like behavior and the brain serotonin system in mice genetically different in tryptophan hydroxylase 2 activity, Neurosci. Lett., 699, 91-96, https://doi.org/10.1016/j.neulet.2019.01.041.

    Article  CAS  PubMed  Google Scholar 

  19. Bazovkina, D. V., Lichman, D. V., and Kulikov, A. V. (2015) The C1473G polymorphism in the Tryptophan hydroxylase-2 gene: involvement in ethanol-related behavior in mice, Neurosci. Lett., 589, 79-82, https://doi.org/10.1016/j.neulet.2015.01.043.

    Article  CAS  PubMed  Google Scholar 

  20. Boone, E. M., Cook, M. N., Hou, X., and Jones, B. C. (1997) Sex and strain influence the effect of ethanol on central monoamines, J. Stud. Alcohol, 58, 590-599, https://doi.org/10.15288/jsa.1997.58.590.

    Article  CAS  PubMed  Google Scholar 

  21. Hitzemann, B., and Hitzemann, R. (1997) Genetics ethanol and the Fos response: a comparison of the C57BL/6J and DBA/2J inbred mouse strains, Alcohol. Clin. Exp. Res., 21, 1497-1507.

    CAS  PubMed  Google Scholar 

  22. Raymond, J. S., Wilson, B. B., Tan, O., Gururajan, A., and Bowen, M. T. (2019) Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice, Psychopharmacology, 236, 3625-3639, https://doi.org/10.1007/s00213-019-05335-8.

    Article  CAS  PubMed  Google Scholar 

  23. Ogilvie, K. M., Lee, S., and Rivier, C. (1998) Divergence in the expression of molecular markers of neuronal activation in the parvocellular paraventricular nucleus of the hypothalamus evoked by alcohol administration via different routes, J. Neurosci., 18, 4344-4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nevo, I., and Hamon, M. (1995) Neurotransmitter and neuromodulatory mechanisms involved in alcohol abuse and alcoholism, Neurochem. Int., 26, 305-342, https://doi.org/10.1016/0197-0186(94)00139-l.

    Article  CAS  PubMed  Google Scholar 

  25. Vilpoux, C., Warnault, V., Pierrefiche, O., Daoust, M., and Naassila, M. (2009) Ethanol-sensitive brain regions in rat and mouse: a cartographic review, using immediate early gene expression, Alcohol. Clin. Exp. Res., 33, 945-969, https://doi.org/10.1111/j.1530-0277.2009.00916.x.

    Article  CAS  PubMed  Google Scholar 

  26. Abrahao, K. P., Salinas, A. G., and Lovinger, D. M. (2017) Alcohol and the brain: neuronal molecular targets, synapses, and circuits, Neuron, 96, 1223-1238, https://doi.org/10.1016/j.neuron.2017.10.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ford, C. P. (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission, Neuroscience, 282, 13-22, https://doi.org/10.1016/j.neuroscience.2014.01.025.

    Article  CAS  PubMed  Google Scholar 

  28. Slotnick, B. M., and Leonard, C. M. (1975) A Stereotaxic Atlas of the Albino Mouse Forebrain, U. S. Dept. of Health, Education and Welfare, Rockville, 174 p.

  29. Naumenko, V. S., and Kulikov, A. V. (2006) Quantitative assay of 5-HT(1A) serotonin receptor gene expression in the brain, Mol. Biol. (Mosk), 40, 37-44, https://doi.org/10.1134/s0026893306010079.

    Article  CAS  PubMed  Google Scholar 

  30. Naumenko, V. S., Osipova, D. V., Kostina, E. V., and Kulikov, A. V. (2008) Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain, J. Neurosci. Methods, 170, 197-203, https://doi.org/10.1016/j.jneumeth.2008.01.008.

    Article  CAS  PubMed  Google Scholar 

  31. Bazovkina, D., Naumenko, V., Bazhenova, E., and Kondaurova, E. (2021) Effect of central administration of brain-derived neurotrophic factor (BDNF) on behavior and brain monoamine metabolism in new recombinant mouse lines differing by 5-HT1A receptor functionality, Int. J. Mol. Sci., 22, 11987, https://doi.org/10.3390/ijms222111987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robinson, S. L., Dornellas, A., Burnham, N. W., Houck, C. A., Luhn, K. L., Bendrath, S. C., Companion, M. A., Brewton, H. W., Thomas, R. D., Navarro, M., and Thiele, T. E. (2020) Distinct and overlapping patterns of acute ethanol-induced c-Fos activation in two inbred replicate lines of mice selected for drinking to high blood ethanol concentrations, Brain Sci., 10, 988, https://doi.org/10.3390/brainsci10120988.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Smith, M. L., Li, J., Cote, D. M., and Ryabinin, A. E. (2016) Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice, Neuroscience, 316, 337-343, https://doi.org/10.1016/j.neuroscience.2015.12.047.

    Article  CAS  PubMed  Google Scholar 

  34. McBride, W. J. (2002) Central nucleus of the amygdala and the effects of alcohol and alcohol-drinking behavior in rodents, Pharmacol. Biochem. Behav., 71, 509-515, https://doi.org/10.1016/s0091-3057(01)00680-3.

    Article  CAS  PubMed  Google Scholar 

  35. LeMarquand, D., Pihl, R. O., and Benkelfat, C. (1994) Serotonin and alcohol intake, abuse, and dependence: findings of animal studies, Biol. Psychiatry, 36, 395-421, https://doi.org/10.1016/0006-3223(94)91215-7.

    Article  CAS  PubMed  Google Scholar 

  36. Badawy, A. A. (2002) Tryptophan metabolism in alcoholism, Nutr. Res. Rev., 15, 123-152, https://doi.org/10.1079/NRR200133.

    Article  CAS  PubMed  Google Scholar 

  37. Siesser, W. B., Zhang, X., Jacobsen, J. P., Sotnikova, T. D., Gainetdinov, R. R., and Caron, M. G. (2010) Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice, Neurosci. Lett., 481, 6-11, https://doi.org/10.1016/j.neulet.2010.06.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berger, S. M., Weber, T., Perreau-Lenz, S., Vogt, M. A., Gartside, S. E., Maser-Gluth, C., Lanfumey, L., Gass, P., Spanagel, R., and Bartsch, D. (2012) A functional Tph2 C1473G polymorphism causes an anxiety phenotype via compensatory changes in the serotonergic system, Neuropsychopharmacology, 37, 1986-1998, https://doi.org/10.1038/npp.2012.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kirby, L. G., Zeeb, F. D., and Winstanley, C. A. (2011) Contributions of serotonin in addiction vulnerability, Neuropharmacology, 61, 421-432, https://doi.org/10.1016/j.neuropharm.2011.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kelaï, S., Renoir, T., Chouchana, L., Saurini, F., Hanoun, N., Hamon, M., and Lanfumey, L. (2008) Chronic voluntary ethanol intake hypersensitizes 5-HT(1A) autoreceptors in C57BL/6J mice, J. Neurochem., 107, 1660-1670, https://doi.org/10.1111/j.1471-4159.2008.05733.x.

    Article  CAS  PubMed  Google Scholar 

  41. Melis, M., Diana, M., Enrico, P., Marinelli, M., and Brodie, M. S. (2009) Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress, Alcohol, 43, 531-539, https://doi.org/10.1016/j.alcohol.2009.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weinshenker, D., and Schroeder, J. P. (2007) There and back again: a tale of norepinephrine and drug addiction, Neuropsychopharmacology, 32, 1433-1451, https://doi.org/10.1038/sj.npp.1301263.

    Article  CAS  PubMed  Google Scholar 

  43. Tang, A., George, M. A., Randall, J. A., and Gonzales, R. A. (2003) Ethanol increases extracellular dopamine concentration in the ventral striatum in C57BL/6 mice, Alcohol. Clin. Exp. Res., 27, 1083-1089, https://doi.org/10.1097/01.ALC.0000075825.14331.65.

    Article  CAS  PubMed  Google Scholar 

  44. Sinyakova, N. A., Bazhenova, E. Y., Kulikova, E. A., Fursenko, D. V., and Kulikov, A. V. (2020) Effect of the C1473G polymorphic variant of the tryptophan hydroxylase 2 gene and photoperiod length on the dopamine system of the mouse brain [in Russian], Mol. Biol. (Mosk), 54, 60-68, https://doi.org/10.31857/S0026898420010140.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-15-00051). The animals’ maintenance was funded by a Budget Project FWNR-2022-0023.

Author information

Authors and Affiliations

Authors

Contributions

D.V.B. and A.V.K. developed the concept, supervised the study, and discussed the results; D.V.B., D.V.F., and V.S.N. carried out the experiments; D.V.B. wrote the manuscript.

Corresponding author

Correspondence to Darya V. Bazovkina.

Ethics declarations

The authors declare no conflict of interest. All procedures were performed in compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications no. 80023, 1996) and the order no. 119 from 01.04.2016 “On the establishment of rules for the proper laboratory practice” (no. 43232, registered on 15.08.2016) by the Ministry of Health of the Russian Federation. The experiments and animal maintenance procedures were approved by the Bioethics Committee of the Institute of Cytology and Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazovkina, D.V., Fursenko, D.V., Naumenko, V.S. et al. The Role of C1473G Polymorphism in Mouse Triptophan Hydroxylase 2 Gene in the Acute Effects of Ethanol on the c-fos Gene Expression and Metabolism of Biogenic Amines in the Brain. Biochemistry Moscow 88, 291–302 (2023). https://doi.org/10.1134/S000629792303001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792303001X

Keywords

Navigation