Skip to main content
Log in

Evolution of Restriction–Modification Systems Consisting of One Restriction Endonuclease and Two DNA Methyltransferases

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Some restriction–modification systems contain two DNA methyltransferases. In the present work, we have classified such systems according to the families of catalytic domains present in the restriction endonucleases and both DNA methyltransferases. Evolution of the restriction–modification systems containing an endonuclease with a NOV_C family domain and two DNA methyltransferases, both with DNA_methylase family domains, was investigated in detail. Phylogenetic tree of DNA methyltransferases from the systems of this class consists of two clades of the same size. Two DNA methyltransferases of each restriction–modification system of this class belong to the different clades. This indicates independent evolution of the two methyltransferases. We detected multiple cross-species horizontal transfers of the systems as a whole, as well as the cases of gene transfer between the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Abbreviations

HGT:

horizontal gene transfer

MTase:

DNA-methyltransferase

REase:

restriction endonuclease

RM systems:

restriction–modification systems

References

  1. Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications, Mol. Biotechnol., 23, 225-244, https://doi.org/10.1385/mb:23:3:225.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes, Nucleic Acids Res., 31, 1805-1812, https://doi.org/10.1093/nar/gkg274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pingoud, A., Wilson, G. G., and Wende, W. (2014) Type II restriction endonucleases – a historical perspective and more, Nucleic Acids Res., 42, 7489-7527, https://doi.org/10.1093/nar/gku447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Szybalski, W., Kim, S. C., Hasan, N., and Podhajska, A. J. (1991) Class-IIS restriction enzymes – a review, Gene, 100, 13-26, https://doi.org/10.1016/0378-1119(91)90345-c.

    Article  CAS  PubMed  Google Scholar 

  5. Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences, Crit. Rev. Biochem. Mol. Biol., 45, 125-145, https://doi.org/10.3109/10409231003628007.

    Article  CAS  PubMed  Google Scholar 

  6. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense, Microbiol. Mol. Biol. Rev., 77, 53-72, https://doi.org/10.1128/mmbr.00044-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furmanek-Blaszk, B., Boratynski, R., Zolcinska, N., and Sektas, M. (2009) M1.MboII and M2.MboII type IIS methyltransferases: Different specificities, the same target, Microbiology, 155, 1111-1121, https://doi.org/10.1099/mic.0.025023-0.

    Article  CAS  PubMed  Google Scholar 

  8. Kriukiene, E., Lubiene, J., Lagunavicius, A., and Lubys, A. (2005) MnlI – The member of H-N-H subtype of Type IIS restriction endonucleases, Biochim. Biophys. Acta, 1751, 194-204, https://doi.org/10.1016/j.bbapap.2005.06.006.

    Article  CAS  PubMed  Google Scholar 

  9. Sapranauskas, R., Sasnauskas, G., Lagunavicius, A., Vilkaitis, G., Lubys, A., and Siksnys, V. (2000) Novel subtype of type IIS restriction enzymes, J. Biol. Chem., 275, 30878-30885, https://doi.org/10.1074/jbc.m003350200.

    Article  CAS  PubMed  Google Scholar 

  10. Sugisaki, H., Kita, K., and Takanami, M. (1989) The FokI restriction-modification system, J. Biol. Chem., 264, 5757-5761, https://doi.org/10.1016/s0021-9258(18)83614-6.

    Article  CAS  PubMed  Google Scholar 

  11. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: The protein families database in 2021, Nucleic Acids Res., 49, D412-D419, https://doi.org/10.1093/nar/gkaa913.

    Article  CAS  PubMed Central  Google Scholar 

  12. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE – a database for DNA restriction and modification: Enzymes, genes and genomes, Nucleic Acids Res., 43, D298-D299, https://doi.org/10.1093/nar/gku1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemoine, F., Correia, D., Lefort, V., Dopplt-Azeroual, O., Mareuil, F., Coen-Boulakia, S., and Gascuel, O. (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists, Nucleic Acids Research, 47, W260-W265, https://doi.org/10.1093/nar/gkz303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Letunic, I., and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation, Nucleic Acids Res., 49, W293-W296, https://doi.org/10.1093/nar/gkab301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22, 1658-1659, https://doi.org/10.1093/bioinformatics/btl158.

    Article  CAS  PubMed  Google Scholar 

  16. Steczkiewicz, K., Muszewska, A., Knizewski, L., Rychlewski, L., and Ginalski, K. (2012) Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily, Nucleic Acids Res., 40, 7016-7045, https://doi.org/10.1093/nar/gks382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sukackaite, R., Grazulis, S., Bochtler, M., and Siksnys, V. (2008) The recognition domain of the BpuJI restriction endonuclease in complex with cognate DNA at 1.3-Å resolution, J. Mol. Biol., 378, 1084-1093, https://doi.org/10.1016/j.jmb.2008.03.041.

    Article  CAS  PubMed  Google Scholar 

  18. Sukackaite, R., Lagunavicius, A., Stankevicius, K., Urbanke, C., Venclovas, Č., and Siksnys, V. (2007) Restriction endonuclease BpuJI specific for the 5′-CCCGT sequence is related to the archaeal Holliday junction resolvase family, Nucleic Acids Res., 35, 2377-2389, https://doi.org/10.1093/nar/gkm164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Degtyarev, S. K., Netesova, N. A., Chizhikov, V. E., and Abdurashitov, M. (1998) Cloning and characterization of the gene encoding M.FauI DNA methyltransferase, Biol. Chem., 379, 567-568.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Grant no. 21-14-00135).

Author information

Authors and Affiliations

Authors

Contributions

A.V. Alekseevsky – concept and management of the work; A.S. Fokina – computer analysis of the data; I.S. Rusinov – preparation of the data on domains in REBASE proteins; D.M. Moshensky – assistance in searching for protein genes; A.S. Fokina, S.A. Spirin, A.S. Karyagina – discussion of the results, writing and editing of the article text.

Corresponding author

Correspondence to Sergey A. Spirin.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokina, A.S., Karyagina, A.S., Rusinov, I.S. et al. Evolution of Restriction–Modification Systems Consisting of One Restriction Endonuclease and Two DNA Methyltransferases. Biochemistry Moscow 88, 253–261 (2023). https://doi.org/10.1134/S0006297923020086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923020086

Keywords

Navigation