Skip to main content
Log in

Effect of Large-Conductance Calcium-Dependent K+ Channel Activator NS1619 on Function of Mitochondria in the Heart of Dystrophin-Deficient Mice

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Abbreviations

DMD:

Duchenne muscular dystrophy

DNP:

2,4-dinitrophenol

MDA:

malondialdehyde

mitoBKCa :

Ca2+-activated mitochondrial potassium channel

MPT pore:

mitochondrial permeability transition pore

mtDNA:

mitochondrial DNA

nDNA:

nuclear DNA

ROS:

reactive oxygen species

References

  1. Emery, A. E. (1991) Population frequencies of inherited neuromuscular diseases – A world survey, Neuromuscul. Disord., 1, 19-29, https://doi.org/10.1016/0960-8966(91)90039-u.

    Article  CAS  PubMed  Google Scholar 

  2. Mavrogeni, S., Markousis-Mavrogenis, G., Papavasiliou, A., and Kolovou, G. (2015) Cardiac involvement in Duchenne and Becker muscular dystrophy, World J. Cardiol., 7, 410-414, https://doi.org/10.4330/wjc.v7.i7.410.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ignatieva, E., Smolina, N., Kostareva, A., and Dmitrieva, R. (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype, Int. J. Mol. Sci., 22, 7349, https://doi.org/10.3390/ijms22147349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamdar, F., and Garry, D. J. (2016) Dystrophin-deficient cardiomyopathy, J. Am. Coll. Cardiol., 67, 2533-2546, https://doi.org/10.1016/j.jacc.2016.02.081.

    Article  CAS  PubMed  Google Scholar 

  5. D’Amario, D., Amodeo, A., Adorisio, R., Tiziano, F. D., Leone, A. M., Perri, G., Bruno, P., Massetti, M., Ferlini, A., Pane, M., Niccoli, G., Porto, I., D’Angelo, G. A., Borovac, J. A., Mercuri, E., and Crea, F. (2017) A current approach to heart failure in Duchenne muscular dystrophy, Heart, 103, 1770-1779, https://doi.org/10.1136/heartjnl-2017-311269.

    Article  CAS  PubMed  Google Scholar 

  6. Ware, S. M. (2017) Genetics of paediatriccardiomyopathies, Curr. Opin. Pediatr., 29, 534-540, https://doi.org/10.1097/MOP.0000000000000533.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Angelini, G., Mura, G., and Messina, G. (2022) Therapeutic approaches to preserve the musculature in Duchenne muscular dystrophy: The importance of the secondary therapies, Exp. Cell Res., 410, 112968, https://doi.org/10.1016/j.yexcr.2021.112968.

    Article  CAS  PubMed  Google Scholar 

  8. Rybalka, E., Timpani, C., Cooke, M. B., Williams, A., and Hayes, A. (2014) Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency, PLoS One, 9, e115763, https://doi.org/10.1371/journal.pone.0115763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vila, M. C., Rayavarapu, S., Hogarth, M., van der Meulen, J. H., Horn, A., Defour, A., Takeda, S., Brown, K. J., Hathout, Y., Nagaraju, K., and Jaiswal, J. K. (2017) Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy, Cell Death Differ., 24, 330-342, https://doi.org/10.1038/cdd.2016.127.

    Article  CAS  PubMed  Google Scholar 

  10. Schiavone, M., Zulian, A., Menazza, S., Petronilli, V., Argenton, F., Merlini, L., Sabatelli, P., and Bernardi, P. (2017) Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy, Pharmacol. Res., 125, 122-131, https://doi.org/10.1016/j.phrs.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  11. Hughes, M. C., Ramos, S. V., Turnbull, P. C., Rebalka, I. A., Cao, A., Monaco, C. M., Varah, N. E., Edgett, B. A., Huber, J. S., Tadi, P., Delfinis, L. J., Schlattner, U., Simpson, J. A., Hawke, T. J., and Perry, C. G. R. (2019) Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H2O2 emission during impaired oxidative phosphorylation, J. Cachexia Sarcopenia Muscle, 10, 643-661, https://doi.org/10.1002/jcsm.12405.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dubinin, M. V., Talanov, E. Y., Tenkov, K. S., Starinets, V. S., Mikheeva, I. B., Sharapov, M. G., and Belosludtsev, K. N. (2020) Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition, Biochim. Biophys. Acta Mol. Basis Dis., 1866, 165674, https://doi.org/10.1016/j.bbadis.2020.165674.

    Article  CAS  PubMed  Google Scholar 

  13. Dubinin, M. V., Talanov, E. Y., Tenkov, K. S., Starinets, V. S., Belosludtseva, N. V., and Belosludtsev, K. N. (2020) The effect of deflazacort treatment on the functioning of skeletal muscle mitochondria in Duchenne muscular dystrophy, Int. J. Mol. Sci., 21, 8763, https://doi.org/10.3390/ijms21228763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mareedu, S., Million, E. D., Duan, D., and Babu, G. J. (2021) Abnormal calcium handling in Duchenne muscular dystrophy: mechanisms and potential therapies, Front. Physiol., 12, 647010, https://doi.org/10.3389/fphys.2021.647010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, W., ten Hove, M., Schneider, J. E., Stuckey, D. J., Sebag-Montefiore, L., Bia, B. L., Radda, G. K., Davies, K. E., Neubauer, S., and Clarke, K. (2008) Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: An MRI and MRS study, J. Mol. Cell. Cardiol., 45, 754-760, https://doi.org/10.1016/j.yjmcc.2008.09.125.

    Article  CAS  PubMed  Google Scholar 

  16. Kyrychenko, V., Poláková, E., Janíček, R., and Shirokova, N. (2015) Mitochondrial dysfunctions during progression of dystrophic cardiomyopathy, Cell Calcium, 58, 186-195, https://doi.org/10.1016/j.ceca.2015.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willi, L., Abramovich, I., Fernandez-Garcia, J., Agranovich, B., Shulman, M., Milman, H., Baskin, P., Eisen, B., Michele, D. E., Arad, M., Binah, O., and Gottlieb, E. (2022) Bioenergetic and metabolic impairments in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients, Int. J. Mol. Sci., 23, 9808, https://doi.org/10.3390/ijms23179808.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ascah, A., Khairallah, M., Daussin, F., Bourcier-Lucas, C., Godin, R., Allen, B. G., Petrof, B. J., Rosiers, C. D., Burelle, Y. (2011) Stress-induced opening of the permeability transition pore in the dystrophin-deficient heart is attenuated by acute treatment with sildenafil, Am. J. Physiol. Heart Circ. Physiol., 300, H144-H153, https://doi.org/10.1152/ajpheart.00522.2010.

    Article  CAS  PubMed  Google Scholar 

  19. Dubinin, M. V., Talanov, E. Y., Tenkov, K. S., Starinets, V. S., Mikheeva, I. B., and Belosludtsev, K. N. (2020) Transport of Ca2+ and Ca2+-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy, Biochim. Biophys. Acta Bioenerg., 1861, 148250, https://doi.org/10.1016/j.bbabio.2020.148250.

    Article  CAS  PubMed  Google Scholar 

  20. Angebault, C., Panel, M., Lacôte, M., Rieusset, J., Lacampagne, A., and Fauconnier, J. (2021) Metformin reverses the enhanced myocardial SR/ER-mitochondria interaction and impaired complex I-driven respiration in dystrophin-deficient mice, Front. Cell Dev. Biol., 8, 609493, https://doi.org/10.3389/fcell.2020.609493.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dubinin, M. V., Starinets, V. S., Talanov, E. Y., Mikheeva, I. B., Belosludtseva, N. V., Serov, D. A., Tenkov, K. S., Belosludtseva, E. V., and Belosludtsev, K. N. (2021) Effect of the non-immunosuppressive MPT pore inhibitor alisporivir on the functioning of heart mitochondria in dystrophin-deficient mdx mice, Biomedicines, 9, 1232, https://doi.org/10.3390/biomedicines9091232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bienengraeber, M., Olson, T. M., Selivanov, V. A., Kathmann, E. C., O’Cochlain, F., Gao, F., Karger, A. B., Ballew, J. D., Hodgson, D. M., Zingman, L. V., Pang, Y. P., Alekseev, A. E., and Terzic, A. (2004) ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating, Nat. Genet., 36, 382-387, https://doi.org/10.1038/ng1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Farid, T. A., Nair, K., Massé, S., Azam, M. A., Maguy, A., Lai, R. F., Umapathy, K., Dorian, P., Chauhan, V., Varró, A., Al-Hesayen, A., Waxman, M., Nattel, S., and Nanthakumar, K. (2011) Role of KATP channels in the maintenance of ventricular fibrillation in cardiomyopathic human hearts, Circ. Res., 109, 1309-1318, https://doi.org/10.1161/CIRCRESAHA.110.232918.

    Article  CAS  PubMed  Google Scholar 

  24. Graciotti, L., Becker, J., Granata, A. L., Procopio, A. D., Tessarollo, L., and Fulgenzi, G. (2011) Dystrophin is required for the normal function of the cardio-protective K(ATP) channel in cardiomyocytes, PLoS One, 6, e27034, https://doi.org/10.1371/journal.pone.0027034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dubinin, M. V., Starinets, V. S., Belosludtseva, N. V., Mikheeva, I. B., Chelyadnikova, Y. A., Penkina, D. K., Vedernikov, A. A., and Belosludtsev, K. N. (2022) The effect of uridine on the state of skeletal muscles and the functioning of mitochondria in Duchenne dystrophy, Int. J. Mol. Sci., 23, 10660, https://doi.org/10.3390/ijms231810660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubinin, M. V., Starinets, V. S., Belosludtseva, N. V., Mikheeva, I. B., Chelyadnikova, Y. A., Igoshkina, A. D., Vafina, A. B., Vedernikov, A. A., and Belosludtsev, K. N. (2022) BKCa activator NS1619 improves the structure and function of skeletal muscle mitochondria in Duchenne dystrophy, Pharmaceutics, 14, 2336, https://doi.org/10.3390/ijms231810660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Checchetto, V., Leanza, L., De Stefani, D., Rizzuto, R., Gulbins, E., and Szabo, I. (2021) Mitochondrial K+ channels and their implications for disease mechanisms, Pharmacol. Ther., 227, 107874, https://doi.org/10.1016/j.pharmthera.2021.107874.

    Article  CAS  PubMed  Google Scholar 

  28. Zorov, D. B. (2022) A window to the potassium world. The evidence of potassium energetics in the mitochondria and identity of the mitochondrial ATP-dependent K+ channel, Biochemistry (Moscow), 87, 683-688, https://doi.org/10.1134/S0006297922080016.

    Article  CAS  PubMed  Google Scholar 

  29. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2021) ATP Synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-“Uniporter” function: I. Characterization of ion fluxes, Function (Oxf), 3, zqab065, https://doi.org/10.1093/function/zqab065.

    Article  PubMed  Google Scholar 

  30. Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+- and H+-fluxes drive ATP synthesis and enable mitochondrial K+-“Uniporter” function: II. Ion and ATP synthase flux regulation, Function (Oxf), 3, zqac001, https://doi.org/10.1093/function/zqac001.

    Article  PubMed  Google Scholar 

  31. González-Sanabria, N., Echeverría, F., Segura, I., Alvarado-Sánchez, R., and Latorre, R. (2021) BK in double-membrane organelles: A biophysical, pharmacological, and functional survey, Front. Physiol., 12, 761474, https://doi.org/10.3389/fphys.2021.761474.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, X., Yin, C., Xi, L., and Kukreja, R. C. (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice, Am. J. Physiol. Heart Circ. Physiol., 287, H2070-H2077, https://doi.org/10.1152/ajpheart.00431.2004.

    Article  CAS  PubMed  Google Scholar 

  33. Lam, J., Katti, P., Biete, M., Mungai, M., AshShareef, S., Neikirk, K., Garza Lopez, E., Vue, Z., Christensen, T. A., Beasley, H. K., Rodman, T. A., Murray, S. A., Salisbury, J. L., Glancy, B., Shao, J., Pereira, R. O., Abel, E. D., and Hinton, A. (2021) A universal approach to analyzing transmission electron microscopy with ImageJ, Cells, 10, 2177, https://doi.org/10.3390/cells10092177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  35. Dubinin, M. V., Semenova, A. A., Ilzorkina, A. I., Markelova, N. Y., Penkov, N. V., Shakurova, E. R., Belosludtsev, K. N., and Parfenova, L. V. (2021) New quaternized pyridinium derivatives of betulin: Synthesis and evaluation of membranotropic properties on liposomes, pro- and eukaryotic cells, and isolated mitochondria, Chem. Biol. Interact., 349, 109678, https://doi.org/10.1016/j.cbi.2021.109678.

    Article  CAS  PubMed  Google Scholar 

  36. Belosludtseva, N. V., Starinets, V. S., Pavlik, L. L., Mikheeva, I. B., Dubinin, M. V., and Belosludtsev, K. N. (2020) The effect of S-15176 difumarate salt on ultrastructure and functions of liver mitochondria of C57BL/6 mice with streptozotocin/high-fat diet-induced type 2 diabetes, Biology, 9, 309, https://doi.org/10.3390/biology9100309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. L. (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction, BMC Bioinform., 13, 134, https://doi.org/10.1186/1471-2105-13-134.

    Article  CAS  Google Scholar 

  38. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 3, 1101-1108, https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  39. Quiros, P. M., Goyal, A., Jha, P., and Auwerx, J. (2017) Analysis of mtDNA/nDNA ratio in mice, Curr. Protoc. Mouse Biol., 7, 47-54, https://doi.org/10.1002/cpmo.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szewczyk, A., Skalska, J., Głąb, M., Kulawiak, B., Malińska, D., Koszela-Piotrowska, I., and Kunz, W. S. (2006) Mitochondrial potassium channels: from pharmacology to function, Biochim. Biophys. Acta, 1757, 715-720, https://doi.org/10.1016/j.bbabio.2006.05.002.

    Article  CAS  PubMed  Google Scholar 

  41. Singh, H., Rong, L., Bopassa, J., Meredith, A., Stefani, E., and Toro, L. (2013) MitoBK-Ca is encoded by the KCNMA1 gene, and a splicing sequence defines its mitochondrial location, Proc. Natl. Acad. Sci. USA, 110, 10836-10841, https://doi.org/10.1073/pnas.1302028110.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heinen, A., Aldakkak, M., Stowe, D. F., Rhodes, S. S., Riess, M. L., Varadarajan, S. G., and Camara, A. K. (2007) Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels, Am. J. Physiol. Heart Circ. Physiol., 293, H1400-H1407, https://doi.org/10.1152/ajpheart.00198.2007.

    Article  CAS  PubMed  Google Scholar 

  43. Kharraz, Y., Guerra, J., Pessina, P., Serrano, A. L., and Muñoz-Cánoves, P. (2014) Understanding the process of fibrosis in Duchenne muscular dystrophy, Biomed. Res. Int., 2014, 965631, https://doi.org/10.1155/2014/965631.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wissing, E. R., Millay, D. P., Vuagniaux, G., and Molkentin, J. D. (2010) Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice, Neuromuscul. Disord., 20, 753-760, https://doi.org/10.1016/j.nmd.2010.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dubinin, M. V., Starinets, V. S., Talanov, E. Y., Mikheeva, I. B., Belosludtseva, N. V., and Belosludtsev, K. N. (2021) Alisporivir Improves mitochondrial function in skeletal muscle of mdx mice but suppresses mitochondrial dynamics and biogenesis, Int. J. Mol. Sci., 22, 9780, https://doi.org/10.3390/ijms22189780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dai, H., Wang, M., Patel, P. N., Kalogeris, T., Liu, Y., Durante, W., and Korthuis, R. J. (2017) Preconditioning with the BKCa channel activator NS-1619 prevents ischemia-reperfusion-induced inflammation and mucosal barrier dysfunction: Roles for ROS and heme oxygenase-1, Am. J. Physiol. Heart Circ. Physiol., 313, H988-H999, https://doi.org/10.1152/ajpheart.00620.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Y., Zhang, S., Zhang, X., Li, J., Ai, X., Zhang, L., Yu, D., Ge, S., Peng, Y., and Chen, X. (2014) Blunted cardiac beta-adrenergic response as an early indication of cardiac dysfunction in Duchenne muscular dystrophy, Cardiovasc. Res., 103, 60-71, https://doi.org/10.1093/cvr/cvu119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Lomonosov Moscow State University development program (PNR 5.13) and Nikon center of Excellence at Belozersky Institute of Physico-Chemical Biology for providing access to the equipment and technical support.

Funding

This work was financially supported by the Russian Science Foundation (project no. 20-75-10006).

Author information

Authors and Affiliations

Authors

Contributions

M. V. Dubinin and K. N. Belosludtsev – conceived and supervised the study; M. V. Dubinin, V. S. Starinets, Yu. A. Chelyadnikova, N. V. Belosludtseva, I. B. Mikheeva, D. K. Penkina, A. D. Igoshkina, E. Yu. Talanov, I. I. Kireev – carried out experiments; M. V. Dubinin, K. N. Belosludtsev, D. B. Zorov – discussed the results of experiments with input from all authors; M. V. Dubinin – wrote the manuscript; M. V. Dubinin, K. N. Belosludtsev, D. B. Zorov – edited the manuscript.

Corresponding author

Correspondence to Mikhail V. Dubinin.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. The work with laboratory animals was carried out in accordance with the European Convention for the Protection of Vertebrates used for experimental and other purposes (Strasbourg, 1986) and the principles of the Helsinki Declaration (2000). All mouse experimentation was approved by the Mari State University Ethics Committee (Protocol No. 01/2021 of 18 October 2021).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Starinets, V.S., Chelyadnikova, Y.A. et al. Effect of Large-Conductance Calcium-Dependent K+ Channel Activator NS1619 on Function of Mitochondria in the Heart of Dystrophin-Deficient Mice. Biochemistry Moscow 88, 189–201 (2023). https://doi.org/10.1134/S0006297923020037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923020037

Keywords

Navigation