Skip to main content
Log in

Identification of the Channelrhodopsin Genes in the Green and Cryptophytic Algae from the White and Black Seas

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Due to the unique capability of modulating cell membrane potential upon photoactivation, channelrhodopsins of green (Chlorophyta) and cryptophytic (Cryptophyta) algae are widely employed in optogenetics, a modern method of light-dependent regulation of biological processes. To enable the search for new genes perspective for optogenetics, we have developed the PCR tests for the presence of genes of the cation and anion channelrhodopsins. Six isolates of green algae Haematococcus and Bracteacoccus from the White Sea region and 2 specimens of Rhodomonas sp. (Cryptophyta) from the regions of White and Black Seas were analyzed. Using our PCR test we have demonstrated the known Haematococcus rhodopsin genes and have discovered novel rhodopsin genes in the genus of Bracteacoccus. Two distantly homologous genes of anion channelrhodopsins were also identified in the cryptophytic Rhodomonas sp. from the White and Black Seas. These results indicate that the developed PCR tests might be useful tool for a broad-range screening of the Chlorophyta and Cryptophyta algae to identify unique channelrhodopsin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

ACR:

anion channelrhodopsin

CCR:

cation channelrhodopsin

References

  1. Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L. (2022) Emerging diversity of channelrhodopsins and their structure-function relationships, Front. Cell. Neurosci., 15, 800313, https://doi.org/10.3389/fncel.2021.800313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sineshchekov, O. A., Jung, K.-H., and Spudich, J. L. (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 99, 8689-8694, https://doi.org/10.1073/pnas.122243399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., et al. (2002) Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 296, 2395-2398, https://doi.org/10.1126/science.1072068.

    Article  CAS  PubMed  Google Scholar 

  4. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., et al. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl. Acad. Sci. USA, 100, 13940-13945, https://doi.org/10.1073/pnas.1936192100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263-1268, https://doi.org/10.1038/nn1525.

    Article  CAS  PubMed  Google Scholar 

  6. Deisseroth, K. (2015) Optogenetics: 10 years of microbial opsins in neuroscience, Nat. Neurosci., 18, 1213-1225, https://doi.org/10.1038/nn.4091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Govorunova, E. G., Sineshchekov, O. A., Liu, X., Janz, R., and Spudich, J. L. (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics, Science, 349, 647-650, https://doi.org/10.1126/science.aaa7484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakao, S., Kojima, K., and Sudo, Y. (2021) Microbial rhodopsins as multi-functional photoreactive membrane proteins for optogenetics, Biol. Pharm. Bull., 44, 1357-1363, https://doi.org/10.1248/bpb.b21-00544.

    Article  CAS  PubMed  Google Scholar 

  9. Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., et al. (2014) Independent optical excitation of distinct neural populations, Nat. Methods, 11, 338-346, https://doi.org/10.1038/nmeth.2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahel, J. A., Boulanger-Scemama, E., Pagot, C., Arleo, A., Galluppi, F., et al. (2021) Partial recovery of visual function in a blind patient after optogenetic therapy, Nat. Med., 27, 1223-1229, https://doi.org/10.1038/s41591-021-01351-4.

    Article  CAS  PubMed  Google Scholar 

  11. Govorunova, E. G., Sineshchekov, O. A., Li, H., Wang, Y., Brown, L. S., et al. (2021) Cation and anion channelrhodopsins: sequence motifs and taxonomic distribution, mBio, 12, e0165621, https://doi.org/10.1128/mBio.01656-21.

    Article  PubMed  Google Scholar 

  12. Chekanov, K., Lobakova, E., Selyakh, I., Semenova, L., Sidorov, R., et al. (2014) Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the white sea coastal rocks (Russia), Mar. Drugs, 12, 4504-4520, https://doi.org/10.3390/md12084504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chekanov, K., Fedorenko, T., Kublanovskaya, A., Litvinov, D., and Lobakova, E. (2020) Diversity of carotenogenic microalgae in the White Sea polar region, FEMS Microbiol. Ecol., 96, fiz183, https://doi.org/10.1093/femsec/fiz183.

    Article  PubMed  Google Scholar 

  14. Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G. (1971) Purification and properties of unicellular blue-green algae (order Chroococcales), Bacteriol. Rev., 35, 171-205, https://doi.org/10.1128/br.35.2.171-205.1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walne, P. R. (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis, Fish. Invest., 26, 1-62.

    Google Scholar 

  16. Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., et al. (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing, PLoS Biol., 12, e1001889, https://doi.org/10.1371/journal.pbio.1001889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jékely, G. (2009) Evolution of phototaxis, Philos. Trans. R Soc. Lond. B Biol. Sci., 364, 2795-2808, https://doi.org/10.1098/rstb.2009.0072.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L. (2016) Structurally distinct cation channelrhodopsins from Cryptophyte algae, Biophys. J., 110, 2302-2304, https://doi.org/10.1016/j.bpj.2016.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y., Tian, R. M., Gao, Z. M., Bougouffa, S., and Qian, P.-Y. (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis, PLoS One, 9, e90053, https://doi.org/10.1371/journal.pone.0090053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krasnova, E. D., Pantyulin, A. N., Matorin, D. N., Todorenko, D. A., Belevich, T. A., et al. (2014) Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) bloom in the redox zone of the basins separating from the White Sea, Mikrobiologiia, 83, 346-354.

    CAS  PubMed  Google Scholar 

  21. Govorunova, E. G., Sineshchekov, O. A., Rodarte, E. M., Janz, R., Morelle, O., et al. (2017) The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity, Sci. Rep., 7, 43358, https://doi.org/10.1038/srep43358.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Govorunova, E. G., Sineshchekov, O. A., Hemmati, R., Janz, R., Morelle, O., et al. (2018) Extending the time domain of neuronal silencing with cryptophyte anion channelrhodopsins, eNeuro, 5, ENEURO.0174-18.2018, https://doi.org/10.1523/ENEURO.0174-18.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chekanov, K., Litvinov, D., Fedorenko, T., Chivkunova, O., and Lobakova, E. (2021) Combined production of astaxanthin and β-carotene in a new strain of the microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) cultivated in photobioreactor, Biology, 10, 643, https://doi.org/10.3390/biology10070643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to A. N. Khanaichenko (Institute of Biology of Southern Seas, Russian Academy of Sciences) and to T. A. Fedorenko (Lomonosov Moscow State University) for providing cultures and recommendations of their cultivation. The support of the scientific and educational school of LMSU “Molecular technologies of living systems and synthetic biology” is appreciated.

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, agreement 075-15-2021-1396.

Author information

Authors and Affiliations

Authors

Contributions

E. S. Lobakova, O. V. Karpova – concept of the study and supervision; E. N. Vinogradova, O. V. Karpova – conducting experiments; E. S. Lobakova, O. V. Karpova, and E. N. Vinogradova – discussion of the results of the study; O. V. Karpova – writing the manuscript; E. S. Lobakova, E. N. Vinogradova – editing the paper.

Corresponding author

Correspondence to Olga V. Karpova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, O.V., Vinogradova, E.N. & Lobakova, E.S. Identification of the Channelrhodopsin Genes in the Green and Cryptophytic Algae from the White and Black Seas. Biochemistry Moscow 87, 1187–1198 (2022). https://doi.org/10.1134/S0006297922100121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922100121

Keywords

Navigation