Skip to main content
Log in

Plant Polysaccharide Array for Studying Carbohydrate-Binding Proteins

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The specificity of the most plant carbohydrate-binding proteins (CBP), many of which are known only through bioinformatic analysis of the genome, has either not been studied at all or characterized to a limited extent. The task of deciphering the carbohydrate specificity of the proteins can be solved using glycoarrays composed of many tens or even hundreds of glycans immobilized on a glass surface. Plant carbohydrates are the most significant natural ligands for plant proteins; this work shows that plant polysaccharides without additional modification can be immobilized on the surface, bearing N-hydroxysuccinimide activated carboxyl groups. As a result, an array of 113 well-characterized polysaccharides isolated from various plant cell walls, 23 mono- and oligosaccharides – components of polysaccharides, and glycans – ligands for widely known plant lectins was designed. Upon chemical immobilization of polysaccharides, their functional activity was preserved, which was confirmed by the results of interaction with antibodies and the plant lectin ricin. Using the constructed array, a previously unknown ability of ricin to bind polysaccharides was found, which significantly expands the knowledge of its specificity, and it was also found that a large variety of antibodies to plant polysaccharides are present in human peripheral blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AGA:

apiogalacturonan

CBP:

carbohydrate-binding proteins

HG:

homogalacturonan

Mw and Mn:

weight average and number average relative molecular weights, respectively

NHS:

N-hydroxysuccinimide

PBS:

phosphate buffered saline

RG-I:

rhamnogalacturonan I

RG-II:

rhamnogalacturonan II

XGA:

xylogalacturonan

References

  1. De Coninck, T., and Van Damme, E. J. M. (2021) Review: the multiple roles of plant lectins, Plant Sci., 313, 1-15, https://doi.org/10.1016/j.plantsci.2021.111096.

    Article  CAS  Google Scholar 

  2. Vandenborre, G., Smagghe, G., and Van Damme, E. J. M. (2011) Plant lectins as defense proteins against phytophagous insects, Phytochemistry, 13, 1538-1550, https://doi.org/10.1016/j.phytochem.2011.02.024.

    Article  CAS  Google Scholar 

  3. De Paz, J. L., and Seeberger, P. H. (2012) In Carbohydrate Microarrays: Methods and Protocols (Chevolot, Y., eds) Humana Press, NJ, pp. 1-12.

  4. Ratner, D. M., Adams, E. W., Disney, M. D., and Seeberger, P. H. (2004) Tools for glycomics: Mapping interactions of carbohydrates in biological systems, ChemBioChem, 10, 1375-1383, https://doi.org/10.1002/cbic.200400106.

    Article  CAS  Google Scholar 

  5. Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., et al. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins, Proc. Natl. Acad. Sci. USA, 49, 17033-17038, https://doi.org/10.1073/pnas.0407902101.

    Article  CAS  Google Scholar 

  6. Shilova, N., Huflejt, M. E., Vuskovic, M., Obukhova, P., et al. (2013) In SialoGlyco Chemistry and Biology I. Topics in Current Chemistry (Gerardy-Schahn, R., Philippe Delannoy, P., von Itzstein, M., eds) Springer Berlin, Heidelberg, pp. 169-181.

  7. Ribeiro, D. O., Pinheiro, B. A., Carvalho, A. L., and Palma, A. S. (2017) In Carbohydrate Chemistry: Chemical and Biological Approaches (Rauter, A., Lindhorst, T., Queneau, Y., eds) CPI Group Ltd, UK, pp. 159-176.

  8. Song, X., Heimburg-Molinaro, J., Cummings, R. D., and Smith, D. F. (2014) Chemistry of natural glycan microarrays, Curr. Opin. Chem. Biol., 1, 70-77, https://doi.org/10.1016/j.cbpa.2014.01.001.

    Article  CAS  Google Scholar 

  9. Sørensen, I., Pedersen, H. L., and Willats, W. G. T. (2009) An array of possibilities for pectin, Carbohydr. Res., 14, 1872-1878, https://doi.org/10.1016/j.carres.2008.12.008.

    Article  CAS  Google Scholar 

  10. Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., et al. (2012) Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research, J. Biol. Chem., 47, 39429-39438, https://doi.org/10.1074/jbc.M112.396598.

    Article  CAS  Google Scholar 

  11. Øbro, J., Sørensen, I., Moller, I., Skjøt, M., Mikkelsen, J. D., et al. (2007) High-throughput microarray analysis of pectic polymers by enzymatic epitope deletion, Carbohydr. Polymers, 1, 77-81, https://doi.org/10.1016/j.carbpol.2007.03.008.

    Article  CAS  Google Scholar 

  12. Moore, J. P., Nguema-Ona, E., Fangel, J. U., Willats, W. G. T., Hugo, A., et al. (2014) Profiling the main cell wall polysaccharides of grapevine leaves using high-throughput and fractionation methods, Carbohydr. Polymers, 99, 190-198, https://doi.org/10.1016/j.carbpol.2013.08.013.

    Article  CAS  Google Scholar 

  13. Kračun, S. K., Fangel, J. U., Rydahl, M. G., Pedersen, H. L., Vidal-Melgosa, S., et al. (2017) In High-Throughput Glycomics and Glycoproteomics (Lauc, G., Wuhrer, M., eds) Humana Press, NY, pp. 147-165.

  14. Sillo, F., Fangel, J. U., Henrissat, B., Faccio, A., Bonfante, P., et al. (2016) Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray, Planta, 2, 347-359, https://doi.org/10.1007/s00425-016-2507-5.

    Article  CAS  Google Scholar 

  15. Salmeán, A. A., Guillouzo, A., Duffieux, D., Jam, M., Matard-Mann, M., et al. (2018) Double blind microarray-based polysaccharide profiling enables parallel identification of uncharacterized polysaccharides and carbohydrate-binding proteins with unknown specificities, Sci. Rep., 1, 1-11, https://doi.org/10.1038/s41598-018-20605-9.

    Article  CAS  Google Scholar 

  16. García Caballero, G., Beckwith, D., Shilova, N. V., Gabba, A., Kutzner, T. J., et al. (2020) Influence of protein (human galectin-3) design on aspects of lectin activity, Histochem. Cell Biol., 2, 135-153, https://doi.org/10.1007/s00418-020-01859-9.

    Article  CAS  Google Scholar 

  17. Dobrochaeva, K., Khasbiullina, N., Shilova, N., Knirel, Y., Obukhova, P., et al. (2021) Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: comparison with human anti‐Galili antibodies, Xenotransplantation, 3, 1-8, https://doi.org/10.1111/xen.12672.

    Article  Google Scholar 

  18. Dobrochaeva, K., Khasbiullina, N., Shilova, N., Antipova, N., Obukhova, P., et al. (2020) Human natural antibodies recognizing glycan Galβ1-3GlcNAc (LeC), Int. J. Mol. Sci., 18, 1-15, https://doi.org/10.3390/ijms21186511.

    Article  CAS  Google Scholar 

  19. Huflejt, M. E., Vuskovic, M., Vasiliu, D., Xu, H., Obukhova, P., et al. (2009) Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges, Mol. Immunol., 15, 3037-3049, https://doi.org/10.1016/j.molimm.2009.06.010.

    Article  CAS  Google Scholar 

  20. Bovin, N. V. (2013) Natural antibodies to glycans, Biochemistry (Moscow), 7, 786-797, https://doi.org/10.1134/S0006297913070109.

    Article  CAS  Google Scholar 

  21. Ralet, M.-C., Tranquet, O., Poulain, D., Moïse, A., and Guillon, F. (2010) Monoclonal antibodies to rhamnogalacturonan I backbone, Planta, 6, 1373-1383, https://doi.org/10.1007/s00425-010-1116-y.

    Article  CAS  Google Scholar 

  22. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956) Colorimetric method for determination of sugars and related substances, Anal. Chem., 3, 350-356, https://doi.org/10.1021/ac60111a017.

    Article  Google Scholar 

  23. Usov, A. I., Bilan, M. I., and Klochkova, N. G. (1995) Polysaccharide composition of several calcareous red algae: isolation of alginate from Corallina pilulifera P. et R. (Rhodophyta, Corallinaceae), Bot. Marina, 38, 43-51, https://doi.org/10.1515/botm.1995.38.1-6.43.

    Article  CAS  Google Scholar 

  24. Lowry, O., Rosebrough, N., Farr, A. L., and Randall, R. (1951) Protein measurement with the folin phenol reagent, J. Biol. Chem., 1, 265-275, https://doi.org/10.1016/S0021-9258(19)52451-6.

    Article  Google Scholar 

  25. Wood, P. J., and Siddiqui, I. R. (1971) Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity, Anal. Biochem., 2, 418-428, https://doi.org/10.1016/0003-2697(71)90432-5.

    Article  Google Scholar 

  26. Golovchenko, V. V., Khramova, D. S., Shashkov, A. S., Otgonbayar, D., Chimidsogzol, A., et al. (2012) Structural characterisation of the polysaccharides from endemic Mongolian desert plants and their effect on the intestinal absorption of ovalbumin, Carbohydr. Res., 356, 265-272, https://doi.org/10.1016/j.carres.2012.03.023.

    Article  CAS  PubMed  Google Scholar 

  27. Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling, Phytochemistry, 6, 929-967, https://doi.org/10.1016/S0031-9422(01)00113-3.

    Article  Google Scholar 

  28. Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., and Schols, H. A. (2009) Pectin, a versatile polysaccharide present in plant cell walls, Struct. Chem., 2, 263-275, https://doi.org/10.1007/s11224-009-9442-z.

    Article  CAS  Google Scholar 

  29. Cheng, K., Zhou, Y., and Neelamegham, S. (2016) DrawGlycan-SNFG: a robust tool to render glycans and glycopeptides with fragmentation information, Glycobiology, 3, 200-205, https://doi.org/10.1093/glycob/cww115.

    Article  CAS  Google Scholar 

  30. Gorshkova, T. A. (2007) Plant Cell Wall as a Dynamic System [in Russian], Nauka, Moscow.

  31. Zandleven, J., Beldman, G., Bosveld, M., Schols, H. A., and Voragen, A. G. J. (2006) Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase, Carbohydr. Polymers, 4, 495-503, https://doi.org/10.1016/j.carbpol.2006.02.015.

    Article  CAS  Google Scholar 

  32. Patova, O. A., Luanda, A., Paderin, N. M., Popov, S. V., Makangara, J. J., et al. (2021) Xylogalacturonan-enriched pectin from the fruit pulp of Adansonia digitata: structural characterization and antidepressant-like effect, Carbohydr. Polymers, 262, 1-10, https://doi.org/10.1016/j.carbpol.2021.117946.

    Article  CAS  Google Scholar 

  33. Golovchenko, V. V., Ovodova, R. G., Shashkov, A. S., and Ovodov, Y. S. (2002) Structural studies of the pectic polysaccharide from duckweed Lemna minor L., Phytochemistry, 1, 89-97, https://doi.org/10.1016/S0031-9422(02)00040-7.

    Article  Google Scholar 

  34. Lin, L. I.-K. (1989) A concordance correlation coefficient to evaluate reproducibility, Biometrics, 1, 255-268, https://doi.org/10.2307/2532051.

    Article  Google Scholar 

  35. Flannery, A., Gerlach, J., Joshi, L., and Kilcoyne, M. (2015) Assessing bacterial interactions using carbohydrate-based microarrays, Microarrays, 4, 690-713, https://doi.org/10.3390/microarrays4040690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laurent, N., Voglmeir, J., and Flitsch, S. L. (2008) Glycoarrays – tools for determining protein-carbohydrate interactions and glycoenzyme specificity, Chem. Commun., 37, 4400-4412, https://doi.org/10.1039/b806983m.

    Article  CAS  Google Scholar 

  37. Puvirajesinghe, T., and Turnbull, J. (2016) Glycoarray technologies: deciphering interactions from proteins to live cell responses, Microarrays, 1, 1-15, https://doi.org/10.3390/microarrays5010003.

    Article  CAS  Google Scholar 

  38. Polito, L., Bortolotti, M., Battelli, M., Calafato, G., and Bolognesi, A. (2019) Ricin: an ancient story for a timeless plant toxin, Toxins, 6, 1-16, https://doi.org/10.3390/toxins11060324.

    Article  CAS  Google Scholar 

  39. Janssen, L. M. A., Heron, M., Murk, J.-L., Leenders, A. C. A. P., Rijkers, G. T., et al. (2021) The clinical relevance of IgM and IgA anti-pneumococcal polysaccharide ELISA assays in patients with suspected antibody deficiency, Clin. Exp. Immunol., 2, 213-221, https://doi.org/10.1111/cei.13605.

    Article  CAS  Google Scholar 

  40. Campanero-Rhodes, M. A., Palma, A. S., Menéndez, M., and Solís, D. (2020) Microarray strategies for exploring bacterial surface glycans and their interactions with glycan-binding proteins, Front. Microbiol., 10, 1-25, https://doi.org/10.3389/fmicb.2019.02909.

    Article  Google Scholar 

  41. Khasbiullina, N. R., Shilova, N. V., Navakouski, M. J., Nokel, A. Y., Blixt, O., et al. (2019) The repertoire of human antiglycan antibodies and its dynamics in the first year of life, Biochemistry (Moscow), 6, 608-616, https://doi.org/10.1134/S0006297919060038.

    Article  Google Scholar 

  42. Yamada, H., Kiyohara, H., and Matsumoto, T. (2003) In Advances in Pectin and Pectinase Research (Voragen, F., Schols, H., Visser, R., eds) Springer Netherlands, Dordrecht, pp. 481-490.

  43. Paulsen, B. S., and Barsett, H. (2005) In Polysaccharides I (Heinze, T., eds) Springer Berlin, Heidelberg, pp. 69-101.

  44. Kiyohara, H., Matsumoto, T., Nagai, T., Kim, S.-J., and Yamada, H. (2006) The presence of natural human antibodies reactive against pharmacologically active pectic polysaccharides from herbal medicines, Phytomedicine, 7, 494-500, https://doi.org/10.1016/j.phymed.2005.09.004.

    Article  CAS  Google Scholar 

  45. Washio, K., Nakamura, M., Sato, N., Hori, M., Matsubara, K., et al. (2022) Anaphylaxis in a pectin- and cashew nut-allergic child caused by a citrus bath, Allergol. Int., 1, 155-157, https://doi.org/10.1016/j.alit.2021.07.006.

    Article  Google Scholar 

  46. Capucilli, P., Kennedy, K., Kazatsky, A. M., Cianferoni, A., and Spergel, J. M. (2019) Fruit for thought: anaphylaxis to fruit pectin in foods, J. Allergy Clin. Immunol. Pract., 2, 719-720, https://doi.org/10.1016/j.jaip.2018.11.047.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to L. V. Kozlova (Kazan Institute of Biochemistry and Biophysics of Kazan Science Center of the Russian Academy of Sciences) for fruitful discussion of the results and help in preparation of the article materials and to A. F. Akhmetgalieva (Kazan Institute of Biochemistry and Biophysics of Kazan Science Center of the Russian Academy of Sciences) for technical support in preparing some commercial polysaccharides. The authors would like to express their gratitude to Dr. M.-C. Ralet and Dr. F. Gillon (French National Institute for Agricultural Research, Nantes, France) for kindly providing the sample of INRA-RU2 antibody as well as to Dr. E. A. Gunther (IPhis FRC Komi SC UB RAS) for kindly providing the polysaccharide’s samples derived from callus cultures.

Funding

This work was financially supported by the Russian Science Foundation [projects no. 20-63-47110 (printing and working with glycan arrays) and no. 20-64-47036 (purification, separation and characterization of polysaccharides)], as well as by the State Assignment no. AAAA-A18-118022790083-9 (selection of a base of commercial polysaccharides).

Author information

Authors and Affiliations

Authors

Contributions

T. A. Gorshkova and N. V. Bovin: problem statement and supervision; N. V. Shilova: development of the concept of the article, formation and discussion of the research results; A. N. Nikiforova: carrying out experiments, description and graphical representation of results, formatting the article; V. V. Golovchenko, O. A. Patova, and P. V. Mikshina: obtaining, purification, fractionation, and characterization of polysaccharide samples, formatting the results in this part of the study, discussion and text editing.

Corresponding author

Correspondence to Anna V. Nikiforova.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforova, A.V., Golovchenko, V.V., Mikshina, P.V. et al. Plant Polysaccharide Array for Studying Carbohydrate-Binding Proteins. Biochemistry Moscow 87, 890–902 (2022). https://doi.org/10.1134/S0006297922090036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922090036

Keywords

Navigation