Skip to main content
Log in

Effect of Peroxiredoxin 6 on p53 Transcription Factor Level

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Peroxiredoxin 6 (Prdx6) is an important antioxidant enzyme with multiple functions in the cell. Prdx6 neutralizes a wide range of hydroperoxides, participates in phospholipid metabolism and cell membrane repair, and in transmission of intracellular and intercellular signals. Disruption of normal Prdx6 expression in the cell leads to the development of pathological conditions. Decrease in the Prdx6 concentration leads to increase in oxidative damage to the cell. At the same time, hyperproduction of Prdx6 is associated with increase in antioxidant status, suppression of apoptosis, and carcinogenesis. Currently, mechanisms of carcinogenic action of peroxiredoxins are poorly understood. In this work we established that the 3-4-fold increase in Prdx6 production in mouse embryonic fibroblast 3T3 cells leads to the 4-5-fold decrease in the level of oncosuppressor p53. At the same time, hyperproduction of Prdx6 leads to the increased expression of RELA and HIF1A, which have oncogenic effects. The 3-4-fold increase in intracellular Prdx6 increases intensity of cell proliferation by 20-30%, promotes increase in antioxidant activity by 30-50%, and increases radioresistance of the transfected 3T3 cells by 30-40%. Increase of the level of intranuclear Prdx6 leads to the decrease in expression of the DNA repair genes in response to radiation, indicating decrease in the genomic DNA damage. This work discusses possible molecular mechanisms of p53 suppression during Prdx6 hyperproduction, which could be used in the development of new approaches in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AP-1:

Activating Protein-1

carboxy-H2DCFDA:

6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate

GFP:

green fluorescent protein

HIF-1α:

hypoxia-inducible factor 1-alpha

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

Nrf2:

nuclear factor erythroid 2-related factor 2

p53:

transcription factor

Prdx:

peroxiredoxin

ROS:

reactive oxygen species

References

  1. Sies, H., and Jones, D. P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., 21, 363-383, https://doi.org/10.1038/s41580-020-0230-3.

    Article  CAS  PubMed  Google Scholar 

  2. Kohlgrüber, S., Upadhye, A., Dyballa-Rukes, N., McNamara, C. A., and Altschmied, J. (2017) Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology, Antioxid. Redox Signal., 26, 679-699, https://doi.org/10.1089/ars.2016.6946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dustin, C. M., Heppner, D. E., Lin, M. C. J., and Van Der Vliet, A. (2021) Redox regulation of tyrosine kinase signalling: more than meets the eye, J. Biochem., 167, 151-163, https://doi.org/10.1093/JB/MVZ085.

    Article  Google Scholar 

  4. Hopkins, B. L., and Neumann, C. A. (2019) Redoxins as gatekeepers of the transcriptional oxidative stress response, Redox Biol., 21, 101104, https://doi.org/10.1016/j.redox.2019.101104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharapov, M. G., Gudkov, S. V., and Lankin, V. Z. (2021) Hydroperoxide-reducing enzymes in the regulation of free-radical processes, Biochemistry (Moscow), 86, 1256-1274, https://doi.org/10.1134/s0006297921100084.

    Article  CAS  Google Scholar 

  6. Sharapov, M. G., and Novoselov, V. I. (2019) Catalytic and signaling role of peroxiredoxins in carcinogenesis, Biochemistry (Moscow), 84, 79-100, https://doi.org/10.1134/s0006297921100084.

    Article  CAS  Google Scholar 

  7. Stöcker, S., Van Laer, K., Mijuskovic, A., and Dick, T. P. (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs, Antioxid. Redox Signal., 28, 558-573, https://doi.org/10.1089/ars.2017.7162.

    Article  CAS  PubMed  Google Scholar 

  8. Wadley, A. J., Aldred, S., and Coles, S. J. (2016) An unexplored role for peroxiredoxin in exercise-induced redox signalling? Redox Biol., 8, 51-58, https://doi.org/10.1016/j.redox.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  9. Fisher, A. B. (2017) Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling, Arch. Biochem. Biophys., 617, 68-83, https://doi.org/10.1016/j.abb.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., Phelan, S. A., Forsman-Semb, K., Taylor, E. F., Petros, C., et al. (2003) Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress, J. Biol. Chem., 278, 25179-25190, https://doi.org/10.1074/jbc.M302706200.

    Article  CAS  PubMed  Google Scholar 

  11. Phelan, S. A., Wang, X., Wallbrandt, P., Forsman-Semb, K., and Paigen, B. (2003) Overexpression of Prdx6 reduces H2O2 but does not prevent diet-induced atherosclerosis in the aortic root, Free Radic. Biol. Med., 35, 1110-1120, https://doi.org/10.1016/S0891-5849(03)00462-3.

    Article  CAS  PubMed  Google Scholar 

  12. Yun, H.-M., Park, K.-R., Lee, H. P., Lee, D. H., Jo, M., et al. (2014) PRDX6 promotes lung tumor progression via its GPx and iPLA2 activities, Free Radic. Biol. Med., 69, 367-376, https://doi.org/10.1016/j.freeradbiomed.2014.02.001.

    Article  CAS  PubMed  Google Scholar 

  13. Choi, H., Chang, J. W., and Jung, Y. K. (2011) Peroxiredoxin 6 interferes with TRAIL-induced death-inducing signaling complex formation by binding to death effector domain caspase, Cell Death Differ., 18, 405-414, https://doi.org/10.1038/cdd.2010.113.

    Article  CAS  PubMed  Google Scholar 

  14. Ma, S., Zhang, X., Zheng, L., Li, Z., Zhao, X., et al. (2016) Peroxiredoxin 6 is a crucial factor in the initial step of mitochondrial clearance and is upstream of the PINK1-Parkin pathway, Antioxid. Redox Signal., 24, 486-501, https://doi.org/10.1089/ars.2015.6336.

    Article  CAS  PubMed  Google Scholar 

  15. Yun, H.-M., Park, K.-R., Park, M. H., Kim, D. H., Jo, M. R., et al. (2015) PRDX6 promotes tumor development via the JAK2/STAT3 pathway in a urethane-induced lung tumor model, Free Radic. Biol. Med., 80, 136-144, https://doi.org/10.1016/j.freeradbiomed.2014.12.022.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, G., Pan, C., Bei, J. X., Li, B., Liang, C., et al. (2020) Mutant p53 in cancer progression and targeted therapies, Front. Oncol., 10, 1-9, https://doi.org/10.3389/fonc.2020.595187.

    Article  Google Scholar 

  17. Shi, T., and Dansen, T. B. (2020) Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxidants Redox Signal., 33, 839-859, https://doi.org/10.1089/ars.2020.8074.

    Article  CAS  Google Scholar 

  18. Eriksson, S. E., Ceder, S., Bykov, V. J. N., and Wiman, K. G. (2019) P53 as a hub in cellular redox regulation and therapeutic target in cancer, J. Mol. Cell Biol., 11, 330-341, https://doi.org/10.1093/jmcb/mjz005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butturini, E., Butera, G., Pacchiana, R., de Prati, A. C., Mariotto, S., et al. (2021) Redox sensitive cysteine residues as crucial regulators of wild-type and mutant p53 isoforms, Cells, 10, 3149, https://doi.org/10.3390/cells10113149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharapov, M. G., Novoselov, V. I., Fesenko, E. E., Bruskov, V. I., and Gudkov, S. V. (2017) The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals, Free Radic. Res., 51, 148-166, https://doi.org/10.1080/10715762.2017.1289377.

    Article  CAS  PubMed  Google Scholar 

  21. Sharapov, M. G., Glushkova, O. V., Parfenyuk, S. B., Gudkov, S. V., Lunin, S. M., et al. (2021) The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6, Arch. Biochem. Biophys., 702, 108830, https://doi.org/10.1016/j.abb.2021.108830.

    Article  CAS  PubMed  Google Scholar 

  22. Novoselova, E. G., Glushkova, O. V., Parfenuyk, S. B., Khrenov, M. O., Lunin, S. M., et al. (2019) Protective effect of peroxiredoxin 6 against toxic effects of glucose and cytokines in pancreatic RIN-m5F β-cells, Biochemistry (Moscow), 84, 637-643, https://doi.org/10.1016/j.abb.2021.108830.

    Article  CAS  Google Scholar 

  23. Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 3, 1101-1108, https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  24. Sharapov, M. G., and Ravin, V. K. (2009) Peroxiredoxin 6 from the clawed frog Xenopus laevis: CDNA cloning, enzyme characterization, and gene expression during development, Biochemistry (Moscow), 74, 898-902, https://doi.org/10.1134/S0006297909080112.

    Article  CAS  Google Scholar 

  25. Kalyanaraman, B., Darley-Usmar, V., Davies, K., Dennery, P., Forman, H., et al. (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radic. Biol Med., 52, 1-6, https://doi.org/10.1016/j.freeradbiomed.2011.09.030.

    Article  CAS  PubMed  Google Scholar 

  26. Wu, D., and Yotnda, P. (2011) Production and detection of reactive oxygen species (ROS) in cancers, J. Vis. Exp., 57, e3357, https://doi.org/10.3791/3357.

    Article  CAS  Google Scholar 

  27. Novoselova, E. G., Sharapov, M. G., Lunin, S. M., Parfenyuk, S. B., Khrenov, M. O., et al. (2021) Peroxiredoxin 6 applied after exposure attenuates damaging effects of X-ray radiation in 3T3 mouse fibroblasts, Antioxidants (Basel), 10, 1951, https://doi.org/10.3390/antiox10121951.

    Article  CAS  Google Scholar 

  28. Sharapov, M. G., Gudkov, S. V., Lankin, V. Z., and Novoselov, V. I. (2021) Role of glutathione peroxidases and peroxiredoxins in free radical-induced pathologies, Biochemistry (Moscow), 86, 1418-1433, https://doi.org/10.1134/s0006297921110067.

    Article  CAS  Google Scholar 

  29. Lee, Y. J. (2020) Knockout mouse models for peroxiredoxins, Antioxidants (Basel), 9, 182, https://doi.org/10.3390/antiox9020182.

    Article  CAS  Google Scholar 

  30. Gao, L., Meng, J., Yue, C., Wu, X., Su, Q., et al. (2021) Integrative analysis the characterization of peroxiredoxins in pan-cancer, Cancer Cell Int., 21, 1-18, https://doi.org/10.1186/s12935-021-02064-x.

    Article  CAS  Google Scholar 

  31. Hernández Borrero, L. J., and El-Deiry, W. S. (2021) Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting, Biochim. Biophys. Acta Rev. Cancer, 1876, 188556, https://doi.org/10.1016/j.bbcan.2021.188556.

    Article  CAS  PubMed  Google Scholar 

  32. Vaddavalli, P. L., and Schumacher, B. (2022) The p53 network: cellular and systemic DNA damage responses in cancer and aging, Trends Genet., 28, 128-136, https://doi.org/10.1016/j.tig.2011.12.002.

    Article  CAS  Google Scholar 

  33. Pearson, G. D., and Merrill, G. F. (1998) Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression, J. Biol. Chem., 273, 5431-5434, https://doi.org/10.1074/jbc.273.10.5431.

    Article  CAS  PubMed  Google Scholar 

  34. Velu, C. S., Niture, S. K., Doneanu, C. E., Pattabiraman, N., and Srivenugopal, K. S. (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-Binding domain during oxidative stress, Biochemistry, 46, 7765-7780, https://doi.org/10.1021/bi700425y.

    Article  CAS  PubMed  Google Scholar 

  35. Ding, C., Fan, X., and Wu, G. (2016) Peroxiredoxin 1 – an antioxidant enzyme in cancer, J. Cell. Mol. Med., 21, 193-202, https://doi.org/10.1111/jcmm.12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolduc, J., Koruza, K., Luo, T., Malo Pueyo, J., Vo, T. N., et al. (2021) Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities, Redox Biol., 42, 101959, https://doi.org/10.1016/j.redox.2021.101959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, Y., Nikulenkov, F., Zawacka-Pankau, J., Li, H., Gabdoulline, R., et al. (2014) ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis, Cell Death Differ., 21, 612-623, https://doi.org/10.1038/cdd.2013.186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, S. Y., Kim, T. J., and Lee, K.-Y. Y. (2008) A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway, FEBS Lett., 582, 1913-1918, https://doi.org/10.1016/j.febslet.2008.05.015.

    Article  CAS  PubMed  Google Scholar 

  39. Jarvis, R. M., Hughes, S. M., and Ledgerwood, E. C. (2012) Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells, Free Radic. Biol. Med., 53, 1522-1530, https://doi.org/10.1016/j.freeradbiomed.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  40. Dhar, S. K., Xu, Y., Chen, Y., and St. Clair, D. K. (2006) Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression, J. Biol. Chem., 281, 21698-21709, https://doi.org/10.1074/jbc.M601083200.

    Article  CAS  PubMed  Google Scholar 

  41. Leonarduzzi, G., Sottero, B., and Poli, G. (2010) Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited, Pharmacol. Ther., 128, 336-374, https://doi.org/10.1016/j.pharmthera.2010.08.003.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, S., Lu, H., and Bai, Y. (2019) Nrf2 in cancers: a double-edged sword, Cancer Med., 8, 2252-2267, https://doi.org/10.1002/cam4.2101.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hellweg, C. E. (2015) The nuclear factor κB pathway: A link to the immune system in the radiation response, Cancer Lett., 368, 275-289, https://doi.org/10.1016/j.canlet.2015.02.019.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, W., Jiang, T., Wang, H., Tao, S., Lau, A., et al. (2012) Does Nrf2 contribute to p53-mediated control of cell survival and death? Antioxid. Redox Signal., 17, 1670-1675, https://doi.org/10.1089/ars.2012.4674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyamoto, S. (2011) Nuclear initiated NF-κB signaling: NEMO and ATM take center stage, Cell Res., 21, 116-130, https://doi.org/10.1038/cr.2010.179.

    Article  CAS  PubMed  Google Scholar 

  46. Singh, V., Gupta, D., and Arora, R. (2015) NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures, Discoveries, 3, e35, https://doi.org/10.15190/d.2015.27.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thomasova, D., Mulay, S. R., Bruns, H., and Anders, H. J. (2012) p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases, Neoplasia (United States), 14, 1097-1101, https://doi.org/10.1593/neo.121534.

    Article  CAS  Google Scholar 

  48. Klein, A. M., De Queiroz, R. M., Venkatesh, D., and Prives, C. (2021) The roles and regulation of MDM2 and MDMX: it is not just about p53, Genes Dev., 35, 575-601, https://doi.org/10.1101/GAD.347872.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Semenza, G. L. (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy, Trends Pharmacol. Sci., 33, 207-214, https://doi.org/10.1016/j.tips.2012.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, H. S., Zhou, Y. N., Li, L., Li, S. F., Long, D., et al. (2019) HIF-1α protects against oxidative stress by directly targeting mitochondria, Redox Biol., 25, 101109, https://doi.org/10.1016/j.redox.2019.101109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharapov, M. G., Novoselov, V. I., and Gudkov, S. V. (2019) Radioprotective role of peroxiredoxin 6, Antioxidants (Basel), 8, 15, https://doi.org/10.3390/antiox8010015.

    Article  CAS  Google Scholar 

  52. Luo, W., Chen, I., Chen, Y., Alkam, D., Wang, Y., et al. (2016) PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia, Oncotarget, 7, 6379-6397, https://doi.org/10.18632/oncotarget.7142.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sendoel, A., Kohler, I., Fellmann, C., Lowe, S. W., and Hengartner, M. O. (2010) HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase, Nature, 465, 577-583, https://doi.org/10.1038/nature09141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, S., Gao, J., Ohlemeyer, C., Roos, D., Niessen, H., et al. (2005) Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes, Free Radic. Biol. Med., 39, 1601-1610, https://doi.org/10.1016/j.freeradbiomed.2005.08.006.

    Article  CAS  PubMed  Google Scholar 

  55. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997) Ap-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1, Proc. Natl. Acad. Sci. USA, 94, 3633-3638, https://doi.org/10.1073/pnas.94.8.3633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirch, H.C., Flaswinkel, S., Rumpf, H., Brockmann, D., and Esche, H. (1999) Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-κB and Myc/Max, Oncogene, 18, 2728-2738, https://doi.org/10.1038/sj.onc.1202626.

    Article  CAS  PubMed  Google Scholar 

  57. Fujioka, S., Niu, J., Schmidt, C., Sclabas, G. M., Peng, B., et al. (2004) NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 Activity, Mol. Cell. Biol., 24, 7806-7819, https://doi.org/10.1128/mcb.24.17.7806-7819.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Equipment of the Center for Collective Use of the Center of Biological Studies, Russian Academy of Sciences was used: department of optical microscopy and spectrophotometry (Leica TCS SP-5, Leica, Germany), department of the sources of ionizing radiation (RUT-15, Mosrentgen, Russia). Part of the study was carried out using a microplate reader (Infinite 200, Tecan, Austria) from the Center for Collective Use of the Institute of Experimental Biology, Russian Academy of Sciences.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-015-00216A).

Author information

Authors and Affiliations

Authors

Contributions

M. G. Sharapov, O. V. Glushkova – concept of the study and supervision; M. G. Sharapov, R. G. Goncharov, S. B. Parfenyuk, O. V. Glushkova – conducting experiments and discussion of results; M. G. Sharapov – writing the paper; O. V. Glushkova – editing the paper.

Corresponding author

Correspondence to Mars G. Sharapov.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, M.G., Goncharov, R.G., Parfenyuk, S.B. et al. Effect of Peroxiredoxin 6 on p53 Transcription Factor Level. Biochemistry Moscow 87, 839–849 (2022). https://doi.org/10.1134/S0006297922080156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080156

Keywords

Navigation