Skip to main content
Log in

Anti-Inflammatory Properties of Metformin During Cultivation of Primary Rat Astrocytes in a Medium with High Glucose Concentration

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Investigation of the relationship between inflammation and energy metabolism is important for understanding biology of chronic noncommunicable diseases. Use of metformin, a drug for treatment of diabetes, is considered as a promising direction for treatment of neurodegenerative diseases and other neuropathologies with an inflammatory component. Astrocytes play an important role in the regulation of energy metabolism and neuroinflammation; therefore, we studied the effect of metformin on the cellular responses of primary rat astrocytes cultured in a medium with high glucose concentration (22.5 mM, 48-h incubation). Lipopolysaccharide (LPS) was used to stimulate inflammation. The effects of metformin were assessed by monitoring changes in the expression of proinflammatory cytokines and synthesis of oxylipins, assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Changes at the intracellular level were assessed by analyzing phosphorylation of ERK kinase and transcription factor STAT3, as well as enzymes mediating oxylipin synthesis, cyclooxygenase 1 and 2 (COX). It was found that, independent on glucose concentration, metformin reduced the LPS-stimulated release of cytokines IL-1β and IL-6, decreased activity of the transcription factor STAT3, ERK kinase, synthesis of the derivatives of the cyclooxygenase branch of metabolism of oxylipins and anandamide, and did not affect formation of ROS. The study of energy phenotype of the cells showed that metformin activated glycolysis and inhibited mitochondrial respiration and oxidative phosphorylation, independent on LPS stimulation and cell cultivation at high glucose concentration. Thus, it has been shown that metformin exhibits anti-inflammatory effects, and its effect on the synthesis of cytokines, prostaglandins, and other lipid mediators could determine beneficial effects of metformin in models of neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

AEA:

anandamide acid

AMPK:

5′ AMP-activated protein kinase

COX:

cyclooxygenase

DHA:

docosahexaenoic acid

ECAR:

extracellular acidification rate

EPA:

eicosapentaenoic acid

HG:

high glucose concentration

IL:

interleukin

LPS:

lipopolysaccharide

NG:

normal glucose concentration

OCR:

oxygen consumption rate

PG:

prostaglandin

ROS:

reactive oxygen species

TNFα:

tumor necrosis factor alpha

References

  1. Bai, B., and Chen, H. (2021) Metformin: A novel weapon against inflammation, Front. Pharmacol., 12, 622262, https://doi.org/10.3389/fphar.2021.622262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foretz, M., Guigas, B., and Viollet, B. (2019) Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus, Nat. Rev. Endocrinol., 15, 569-589, https://doi.org/10.1038/s41574-019-0242-2.

    Article  CAS  PubMed  Google Scholar 

  3. Markowicz-Piasecka, M., Sikora, J., Szydłowska, A., Skupień, A., Mikiciuk-Olasik, E., et al. (2017) Metformin – a future therapy for neurodegenerative diseases, Pharm. Res., 34, 2614-2627, https://doi.org/10.1007/s11095-017-2199-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chistyakov, D. V., Astakhova, A. A., and Sergeeva, M. G. (2018) Resolution of inflammation and mood disorders, Exp. Mol. Pathol., 105, 190-201, https://doi.org/10.1016/j.yexmp.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  5. Chistyakov, D. V., Goriainov, S. V., Astakhova, A. A., and Sergeeva, M. G. (2021) High glucose shifts the oxylipin profiles in the astrocytes towards pro-inflammatory statesm, Metabolites, 11, 311, https://doi.org/10.3390/metabo11050311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, S. A., and Choi, H. C. (2012) Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells, Biochem. Biophys. Res. Commun., 425, 866-872, https://doi.org/10.1016/j.bbrc.2012.07.165.

    Article  CAS  PubMed  Google Scholar 

  7. Jing, Y., Wu, F., Li, D., Yang, L., Li, Q., and Li, R. (2018) Metformin improves obesity-associated inflammation by altering macrophages polarization, Mol. Cell. Endocrinol., 461, 256-264, https://doi.org/10.1016/j.mce.2017.09.025.

    Article  CAS  PubMed  Google Scholar 

  8. Qi, T., Chen, Y., Li, H., Pei, Y., Woo, S. L., et al. (2017) A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses, J. Mol. Endocrinol., 59, 49-59, https://doi.org/10.1530/JME-17-0066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, J., Massey, S., Story, D., and Li, L. (2018) Metformin: An old drug with new applications, Int. J. Mol. Sci., 19, 2863, https://doi.org/10.3390/ijms19102863.

    Article  CAS  PubMed Central  Google Scholar 

  10. Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J. P., Petzold, G. C., et al. (2021) Reactive astrocyte nomenclature, definitions, and future directions, Nat. Neurosci., 24, 312-325, https://doi.org/10.1038/s41593-020-00783-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Linnerbauer, M., Wheeler, M. A., and Quintana, F. J. (2020) Astrocyte crosstalk in CNS inflammation, Neuron, 108, 608-622, https://doi.org/10.1016/j.neuron.2020.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lalo, U., and Pankratov, Y. (2021) Astrocytes as perspective targets of exercise- and caloric restriction-mimetics, Neurochem. Res., 46, 2746-2759, https://doi.org/10.1007/s11064-021-03277-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bélanger, M., Allaman, I., and Magistretti, P. J. (2011) Brain energy metabolism: Focus on Astrocyte-neuron metabolic cooperation, Cell Metab., 14, 724-738, https://doi.org/10.1016/j.cmet.2011.08.016.

    Article  CAS  PubMed  Google Scholar 

  14. Rotermund, C., Machetanz, G., and Fitzgerald, J. C. (2018) The therapeutic potential of metformin in neurodegenerative diseases, Front. Endocrinol. (Lausanne), 9, 400, https://doi.org/10.3389/fendo.2018.00400.

    Article  Google Scholar 

  15. Li, W., Chaudhari, K., Shetty, R., Winters, A., Gao, X., et al. (2019) Metformin alters locomotor and cognitive function and brain metabolism in normoglycemic mice, Aging Dis., 10, 949-963, https://doi.org/10.14336/AD.2019.0120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ge, A., Wang, S., Miao, B., and Yan, M. (2018) Effects of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn of rats with neuropathic pain, Mol. Med. Rep., 17, 5229-5237, https://doi.org/10.3892/mmr.2018.8541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ou, Z., Kong, X., Sun, X., He, X., Zhang, L., et al. (2018) Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice, Brain. Behav. Immun., 69, 351-363, https://doi.org/10.1016/j.bbi.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, G., Cui, W., Chen, S., Shao, Z., Li, Y., et al. (2021) Metformin alleviates high glucose-induced ER stress and inflammation by inhibiting the interaction between caveolin1 and AMPKα in rat astrocytes, Biochem. Biophys. Res. Commun., 534, 908-913, https://doi.org/10.1016/j.bbrc.2020.10.075.

    Article  CAS  PubMed  Google Scholar 

  19. Hohnholt, M. C., Blumrich, E. M., Waagepetersen, H. S., and Dringen, R. (2017) The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes, J. Neurosci. Res., 95, 2307-2320, https://doi.org/10.1002/jnr.24050.

    Article  CAS  PubMed  Google Scholar 

  20. Westhaus, A., Blumrich, E. M., and Dringen, R. (2017) The antidiabetic drug metformin stimulates glycolytic lactate production in cultured primary rat astrocytes, Neurochem. Res., 42, 294-305, https://doi.org/10.1007/s11064-015-1733-8.

    Article  CAS  PubMed  Google Scholar 

  21. Astakhova, A., Chistyakov, D., Thomas, D., Geisslinger, G., Brüne, B., et al. (2019) Inhibitors of oxidative phosphorylation modulate astrocyte inflammatory responses through AMPK-dependent Ptgs2 mRNA stabilization, Cells, 8, 1185, https://doi.org/10.3390/cells8101185.

    Article  CAS  PubMed Central  Google Scholar 

  22. Chistyakov, D. V., Azbukina, N. V., Astakhova, A. A., Polozhintsev, A. I., Sergeeva, M. G., et al. (2019) Toll-like receptors control p38 and JNK MAPK signaling pathways in rat astrocytes differently, when cultured in normal or high glucose concentrations, Neurochem. Int., 131, 104513, https://doi.org/10.1016/j.neuint.2019.104513.

    Article  CAS  PubMed  Google Scholar 

  23. Chistyakov, D. V., Gavrish, G. E., Goriainov, S. V., Chistyakov, V. V., Astakhova, A. A., et al. (2020) Oxylipin profiles as functional characteristics of acute inflammatory responses in astrocytes pre-treated with IL-4, IL-10, or LPS, Int. J. Mol. Sci., 21, 1780, https://doi.org/10.3390/ijms21051780.

    Article  CAS  PubMed Central  Google Scholar 

  24. Chistyakov, D. V., Aleshin, S. E., Astakhova, A. A., Sergeeva, M. G., and Reiser, G. (2015) Regulation of peroxisome proliferator-activated receptors (PPAR) α and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists, J. Neurochem., 134, 113-124, https://doi.org/10.1111/jnc.13101.

    Article  CAS  PubMed  Google Scholar 

  25. Guryleva, M. V., Chistyakov, D. V., Lopachev, A. V., Goriainov, S. V., Astakhova, A. A., et al. (2021) Modulation of the primary astrocyte-enriched cultures’ oxylipin profiles reduces neurotoxicity, Metabolites, 11, 498, https://doi.org/10.3390/metabo11080498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gong, P., Xu, X., Shi, J., Ni, L., Huang, Q., et al. (2013) Phosphorylation of mitogen- and stress-activated protein kinase-1 in astrocytic inflammation: A possible role in inhibiting production of inflammatory cytokines, PLoS One, 8, e81747, https://doi.org/10.1371/journal.pone.0081747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X., Tian, Y., Lu, N., Gin, T., Cheng, C. H. K., et al. (2013) Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes, PLoS One, 8, e75804, https://doi.org/10.1371/journal.pone.0075804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, J., Kwak, H. J., Cha, J. Y., Jeong, Y. S., Rhee, S. D., et al. (2014) Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via Activating Transcription Factor-3 (ATF-3) induction, J. Biol. Chem., 289, 23246-23255, https://doi.org/10.1074/jbc.M114.577908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, W., Choudhury, G. R., Winters, A., Prah, J., Lin, W., et al. (2018) Hyperglycemia alters astrocyte metabolism and inhibits astrocyte proliferation, Aging Dis., 9, 674-684, https://doi.org/10.14336/AD.2017.1208.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quincozes-Santos, A., Bobermin, L. D., de Assis, A. M., Gonçalves, C. A., and Souza, D. O. (2017) Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 1-14, https://doi.org/10.1016/j.bbadis.2016.09.013.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J., Li, G., Wang, Z., Zhang, X., Yao, L., et al. (2012) High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes, Neuroscience, 202, 58-68, https://doi.org/10.1016/j.neuroscience.2011.11.062.

    Article  CAS  PubMed  Google Scholar 

  32. Xian, H., Liu, Y., Rundberg Nilsson, A., Gatchalian, R., Crother, T. R., et al. (2021) Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation, Immunity, 54, 1463-1477.e11, https://doi.org/10.1016/j.immuni.2021.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tayara, K., Espinosa-Oliva, A. M., García-Domínguez, I., Ismaiel, A. A., Boza-Serrano, A., et al. (2018) Divergent effects of metformin on an inflammatory model of Parkinson’s disease, Front. Cell. Neurosci., 12, 440, https://doi.org/10.3389/fncel.2018.00440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beurel, E., and Jope, R. S. (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain, J. Neuroinflamm., 6, 9, https://doi.org/10.1186/1742-2094-6-9.

    Article  CAS  Google Scholar 

  35. Lamichhane, S., Bastola, T., Pariyar, R., Lee, E. S., Lee, H. S., et al. (2017) ROS production and ERK activity are involved in the effects of D-β-hydroxybutyrate and metformin in a glucose deficient condition, Int. J. Mol. Sci., 18, 674, https://doi.org/10.3390/ijms18030674.

    Article  CAS  PubMed Central  Google Scholar 

  36. De Morais, H., de Souza, C. P., da Silva, L. M., Ferreira, D. M., Baggio, C. H., et al. (2016) Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: role of CB1 receptors, Eur. Neuropsychopharmacol., 26, 1590-1600, https://doi.org/10.1016/j.euroneuro.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  37. Cui, N., Feng, X., Zhao, Z., Zhang, J., Xu, Y., et al. (2017) Restored plasma anandamide and endometrial expression of fatty acid amide hydrolase in women with polycystic ovary syndrome by the combination use of Diane-35 and metformin, Clin. Ther., 39, 751-758, https://doi.org/10.1016/j.clinthera.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  38. Quan, Y., Jiang, C. T., Xue, B., Zhu, S. G., and Wang, X. (2011) High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways, Acta Pharmacol. Sin., 32, 188-193, https://doi.org/10.1038/aps.2010.174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., et al. (2019) Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-Dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes, J. Diabetes Res., 2019, 8151836, https://doi.org/10.1155/2019/8151836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kajiwara, C., Kusaka, Y., Kimura, S., Yamaguchi, T., Nanjo, Y., et al. (2018) Metformin mediates protection against legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species, J. Immunol., 200, 623-631, https://doi.org/10.4049/jimmunol.1700474.

    Article  CAS  PubMed  Google Scholar 

  41. Barros, L. F., Ruminot, I., San Martín, A., Lerchundi, R., Fernández-Moncada, I., et al. (2021) Aerobic glycolysis in the brain: Warburg and Crabtree Contra Pasteur, Neurochem. Res., 46, 15-22, https://doi.org/10.1007/s11064-020-02964-w.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, J., Zhang, L., Nie, J., Lin, Y., Li, Y., et al. (2021) Calcineurin inactivation inhibits pyruvate dehydrogenase complex activity and induces the Warburg effect, Oncogene, 40, 6692-6702, https://doi.org/10.1038/s41388-021-02065-0.

    Article  CAS  PubMed  Google Scholar 

  43. Alhourani, A. H., Tidwell, T. R., Bokil, A. A., Røsland, G. V., Tronstad, K. J., et al. (2021) Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells, Sci. Rep., 11, 10487, https://doi.org/10.1038/s41598-021-89861-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frauwirth, K. A., Riley, J. L., Harris, M. H., Parry, R. V., Rathmell, J. C., et al. (2002) The CD28 signaling pathway regulates glucose metabolism, Immunity, 16, 769-777, https://doi.org/10.1016/s1074-7613(02)00323-0.

    Article  CAS  PubMed  Google Scholar 

  45. Mason, S. (2017) Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond, Front. Neurosci., 11, 43, https://doi.org/10.3389/fnins.2017.00043.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Moscow State University Development Program for providing access to the confocal microscope Zeiss LSM900.

Funding

This study was financially supported by the Russian Science Foundation (project no. 20-74-00068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Chistyakov.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbatenko, V.O., Goriainov, S.V., Babenko, V.A. et al. Anti-Inflammatory Properties of Metformin During Cultivation of Primary Rat Astrocytes in a Medium with High Glucose Concentration. Biochemistry Moscow 87, 577–589 (2022). https://doi.org/10.1134/S000629792207001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792207001X

Keywords

Navigation