Skip to main content
Log in

Structure and Polymorphism of Amyloid and Amyloid-Like Aggregates

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Amyloids are protein aggregates with the cross-β structure. The interest in amyloids is explained, on the one hand, by their role in the development of socially significant human neurodegenerative diseases, and on the other hand, by the discovery of functional amyloids, whose formation is an integral part of cellular processes. To date, more than a hundred proteins with the amyloid or amyloid-like properties have been identified. Studying the structure of amyloid aggregates has revealed a wide variety of protein conformations. In the review, we discuss the diversity of protein folds in the amyloid-like aggregates and the characteristic features of amyloid aggregates that determine their unusual properties, including stability and interaction with amyloid-specific dyes. The review also describes the diversity of amyloid aggregates and its significance for living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid

Cryo-EM:

cryogenic electron microscopy

LARKS:

low-complexity aromatic-rich kinked segment

PHF:

paired helical filament

PrP:

prion protein

SF:

straight filament

TTR:

transthyretin

References

  1. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., et al. (2012) Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis, Amyloid, 19, 167-170, https://doi.org/10.3109/13506129.2012.734345.

    Article  CAS  PubMed  Google Scholar 

  2. Sergeeva, A. V., and Galkin, A. P. (2020) Functional amyloids of eukaryotes: criteria, classification, and biological significance, Curr. Genet., 66, 849-866, https://doi.org/10.1007/s00294-020-01079-7.

    Article  CAS  PubMed  Google Scholar 

  3. Matiiv, A. B., Trubitsina, N. P., Matveenko, A. G., Barbitoff, Y. A., Zhouravleva, G. A., et al. (2020) Amyloid and amyloid-like aggregates: diversity and the term crisis, Biochemistry. (Moscow), 85, 1011-1034, https://doi.org/10.1134/S0006297920090035.

    Article  CAS  Google Scholar 

  4. Rubel, M. S., Fedotov, S. A., Grizel, A. V., Sopova, J. V., Malikova, O. A., et al. (2020) Functional mammalian amyloids and amyloid-like proteins, Life (Basel), 10, 156, https://doi.org/10.3390/life10090156.

    Article  CAS  Google Scholar 

  5. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A., and Radford, S. E. (2018) A new era for understanding amyloid structures and disease, Nat. Rev. Mol. Cell Biol., 19, 755-773, https://doi.org/10.1038/s41580-018-0060-8.

    Article  CAS  PubMed  Google Scholar 

  6. Groenning, M. (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status, J. Chem. Biol., 3, 1-18, https://doi.org/10.1007/s12154-009-0027-5.

    Article  PubMed  Google Scholar 

  7. Howie, A. J., and Brewer, D. B. (2009) Optical properties of amyloid stained by Congo red: History and mechanisms, Micron, 40, 285-301, https://doi.org/10.1016/j.micron.2008.10.002.

    Article  CAS  PubMed  Google Scholar 

  8. Krebs, M. R. H., Bromley, E. H. C., and Donald, A. M. (2005) The binding of thioflavin-T to amyloid fibrils: Localisation and implications, J. Struct. Biol., 149, 30-37, https://doi.org/10.1016/j.jsb.2004.08.002.

    Article  CAS  PubMed  Google Scholar 

  9. Howie, A. J., Brewer, D. B., Howell, D., and Jones, A. P. (2008) Physical basis of colors seen in Congo red-stained amyloid in polarized light, Lab. Invest., 88, 232-242, https://doi.org/10.1038/labinvest.3700714.

    Article  CAS  PubMed  Google Scholar 

  10. Biancalana, M., Makabe, K., Koide, A., and Koide, S. (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies, J. Mol. Biol., 385, 1052-1063, https://doi.org/10.1016/j.jmb.2008.11.006.

    Article  CAS  PubMed  Google Scholar 

  11. Kajava, A. V., Baxa, U., Wickner, R. B., and Steven, A. C. (2004) A model for Ure2p prion filaments and other amyloids: the parallel superpleated β-structure, Proc. Natl. Acad. Sci. USA, 101, 7885-7890, https://doi.org/10.1073/pnas.0402427101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Groenning, M., Norrman, M., Flink, J. M., van de Weert, M., Bukrinsky, J. T., et al. (2007) Binding mode of Thioflavin T in insulin amyloid fibrils, J. Struct. Biol., 159, 483-497, https://doi.org/10.1016/j.jsb.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  13. Kuznetsova, I. M., Sulatskaya, A. I., Uversky, V. N., and Turoverov, K. K. (2012) A new trend in the experimental methodology for the analysis of the thioflavin T binding to amyloid fibrils, Mol. Neurobiol., 45, 488-498, https://doi.org/10.1007/s12035-012-8272-y.

    Article  CAS  PubMed  Google Scholar 

  14. Sulatskaya, A. I., Kuznetsova, I. M., Belousov, M. V., Bondarev, S. A., Zhouravleva, G. A., et al. (2016) Stoichiometry and affinity of thioflavin T binding to Sup35p amyloid fibrils, PLoS One, 11, e0156314, https://doi.org/10.1371/journal.pone.0156314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang, H.-Y., Lin, J.-Y., Lee, H.-C., Wang, H.-L., and King, C.-Y. (2008) Strain-specific sequences required for yeast [PSI+] prion propagation, Proc. Natl. Acad. Sci. USA, 105, 13345-13350, https://doi.org/10.1073/pnas.0802215105.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kabani, M., and Melki, R. (2020) The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils, Biochem. Biophys. Res. Commun., 529, 533-539, https://doi.org/10.1016/j.bbrc.2020.06.024.

    Article  CAS  PubMed  Google Scholar 

  17. Tayeb-Fligelman, E., Tabachnikov, O., Moshe, A., Goldshmidt-Tran, O., Sawaya, M. R., et al. (2017) The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril, Science, 355, 831-833, https://doi.org/10.1126/science.aaf4901.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parker, C. A., and Joyce, T. A. (1973) Prompt and delayed fluorescence of some DNA adsorbates, Photochem. Photobiol., 18, 467-474, https://doi.org/10.1111/j.1751-1097.1973.tb06451.x.

    Article  CAS  PubMed  Google Scholar 

  19. Cundall, R. B., Davies, A. K., Morris, P. G., and Williams, J. (1981) Factors influencing the photosensitizing properties and photoluminescence of thioflavin T, J. Photochem., 17, 369-376, https://doi.org/10.1016/0047-2670(81)85379-8.

    Article  CAS  Google Scholar 

  20. Verma, S., Ravichandiran, V., and Ranjan, N. (2021) Beyond amyloid proteins: Thioflavin T in nucleic acid recognition, Biochimie, 190, 111-123, https://doi.org/10.1016/j.biochi.2021.06.003.

    Article  CAS  PubMed  Google Scholar 

  21. Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S.-I., Merlini, G., et al. (2016) Amyloid fibril proteins and amyloidosis: Chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines, Amyloid, 23, 209-213, https://doi.org/10.1080/13506129.2016.1257986.

    Article  CAS  PubMed  Google Scholar 

  22. Khurana, R., Uversky, V. N., Nielsen, L., and Fink, A. L. (2001) Is Congo red an amyloid-specific dye? J. Biol. Chem., 276, 22715-22721, https://doi.org/10.1074/jbc.M011499200.

    Article  CAS  PubMed  Google Scholar 

  23. Bousset, L., Redeker, V., Decottignies, P., Dubois, S., Le Maréchal, P., et al. (2004) Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p, Biochemistry, 43, 5022-5032, https://doi.org/10.1021/bi049828e.

    Article  CAS  PubMed  Google Scholar 

  24. Yakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., and Bobylev, A. G. (2019) Congo red and amyloids: history and relationship, Biosci. Rep., 39, BSR20181415, https://doi.org/10.1042/BSR20181415.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. Ø., Riekel, C., et al. (2005) Structure of the cross-beta spine of amyloid-like fibrils, Nature, 435, 773-778, https://doi.org/10.1038/nature03680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A., et al. (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers, Nature, 447, 453-457, https://doi.org/10.1038/nature05695.

    Article  CAS  PubMed  Google Scholar 

  27. Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., et al. (2012) Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels, Cell, 149, 753-767, https://doi.org/10.1016/j.cell.2012.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hughes, M. P., Sawaya, M. R., Boyer, D. R., Goldschmidt, L., Rodriguez, J. A., et al. (2018) Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks, Science, 359, 698-701, https://doi.org/10.1126/science.aan6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo, F., Gui, X., Zhou, H., Gu, J., Li, Y., et al. (2018) Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation, Nat. Struct. Mol. Biol., 25, 341-346, https://doi.org/10.1038/s41594-018-0050-8.

    Article  CAS  PubMed  Google Scholar 

  30. Gui, X., Luo, F., Li, Y., Zhou, H., Qin, Z., et al. (2019) Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly, Nat. Commun., 10, 2006, https://doi.org/10.1038/s41467-019-09902-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hughes, M. P., Goldschmidt, L., and Eisenberg, D. S. (2021) Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils, J. Biol. Chem., 297, 101194, https://doi.org/10.1016/j.jbc.2021.101194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kajava, A. V., Baxa, U., and Steven, A. C. (2010) Beta arcades: Recurring motifs in naturally occurring and disease-related amyloid fibrils, FASEB J., 24, 1311-1319, https://doi.org/10.1096/fj.09-145979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hennetin, J., Jullian, B., Steven, A. C., and Kajava, A. V. (2006) Standard conformations of beta-arches in beta-solenoid proteins, J. Mol. Biol., 358, 1094-1105, https://doi.org/10.1016/j.jmb.2006.02.039.

    Article  CAS  PubMed  Google Scholar 

  34. Trott, O., and Olson, A. J. (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455-461, https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shewmaker, F., McGlinchey, R. P., and Wickner, R. B. (2011) Structural insights into functional and pathological amyloid, J. Biol. Chem., 286, 16533-16540, https://doi.org/10.1074/jbc.R111.227108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiang, W., Yau, W.-M., Luo, Y., Mattson, M. P., and Tycko, R. (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils, Proc. Natl. Acad. Sci. USA, 109, 4443-4448, https://doi.org/10.1073/pnas.1111305109.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Antzutkin, O. N., Balbach, J. J., Leapman, R. D., Rizzo, N. W., Reed, J., et al. (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer’s beta-amyloid fibrils, Proc. Natl. Acad. Sci. USA, 97, 13045-13050, https://doi.org/10.1073/pnas.230315097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, Y., Guo, C., Watzlawik, J. O., Randolph, P. S., Lee, E. J., et al. (2020) Out-of-register parallel β-sheets and antiparallel β-sheets coexist in 150-kDa oligomers formed by amyloid-β(1-42), J. Mol. Biol., 432, 4388-4407, https://doi.org/10.1016/j.jmb.2020.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leinala, E. K., Davies, P. L., Doucet, D., Tyshenko, M. G., Walker, V. K., et al. (2002) A β-helical antifreeze protein isoform with increased activity, J. Biol. Chem., 277, 33349-33352, https://doi.org/10.1074/jbc.M205575200.

    Article  CAS  PubMed  Google Scholar 

  40. Flores-Fernández, J., Rathod, V., and Wille, H. (2018) Comparing the folds of prions and other pathogenic amyloids, Pathogens, 7, 50, https://doi.org/10.3390/pathogens7020050.

    Article  CAS  PubMed Central  Google Scholar 

  41. Kraus, A., Hoyt, F., Schwartz, C. L., Hansen, B., Artikis, E., et al. (2021) High-resolution structure and strain comparison of infectious mammalian prions, Mol. Cell, 81, 4540-4551.e6, https://doi.org/10.1016/j.molcel.2021.08.011.

    Article  CAS  PubMed  Google Scholar 

  42. Van Melckebeke, H., Wasmer, C., Lange, A., Ab, E., Loquet, A., et al. (2010) Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy, J. Am. Chem. Soc., 132, 13765-13775, https://doi.org/10.1021/ja104213j.

    Article  CAS  PubMed  Google Scholar 

  43. Fitzpatrick, A. W. P., Falcon, B., He, S., Murzin, A. G., Murshudov, G., et al. (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease, Nature, 547, 185-190, https://doi.org/10.1038/nature23002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Louros, N. N., Baltoumas, F. A., Hamodrakas, S. J., and Iconomidou, V. A. (2016) A β-solenoid model of the Pmel17 repeat domain: Insights to the formation of functional amyloid fibrils, J. Comput. Aided Mol. Des., 30, 153-164, https://doi.org/10.1007/s10822-015-9892-x.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, W., Li, C., Shan, J., Wang, Y., and Chen, G. (2021) Insights into the aggregation mechanism of RNA recognition motif domains in TDP-43: a theoretical exploration, R. Soc. Open Sci., 8, 210160, https://doi.org/10.1098/rsos.210160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baxa, U., Wickner, R. B., Steven, A. C., Anderson, D. E., Marekov, L. N., et al. (2007) Characterization of beta-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance, Biochemistry, 46, 13149-13162, https://doi.org/10.1021/bi700826b.

    Article  CAS  PubMed  Google Scholar 

  47. Camino, J. D., Gracia, P., Chen, S. W., Sot, J., de la Arada, I., et al. (2020) The extent of protein hydration dictates the preference for heterogeneous or homogeneous nucleation generating either parallel or antiparallel β-sheet α-synuclein aggregates, Chem. Sci., 11, 11902-11914, https://doi.org/10.1039/D0SC05297C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Do, H. Q., Hewetson, A., Myers, C., Khan, N. H., Hastert, M. C., et al. (2019) The functional mammalian CRES (Cystatin-Related Epididymal Spermatogenic) amyloid is antiparallel β-sheet rich and forms a metastable oligomer during assembly, Sci. Rep., 9, 9210, https://doi.org/10.1038/s41598-019-45545-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rigoldi, F., Metrangolo, P., Redaelli, A., and Gautieri, A. (2017) Nanostructure and stability of calcitonin amyloids, J. Biol. Chem., 292, 7348-7357, https://doi.org/10.1074/jbc.M116.770271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khatun, S., Singh, A., Pawar, N., and Gupta, A. N. (2019) Aggregation of amylin: spectroscopic investigation, Int. J. Biol. Macromol., 133, 1242-1248, https://doi.org/10.1016/j.ijbiomac.2019.04.167.

    Article  CAS  PubMed  Google Scholar 

  51. Lecoq, L., Wiegand, T., Rodriguez-Alvarez, F. J., Cadalbert, R., Herrera, G. A., et al. (2019) A substantial structural conversion of the native monomer leads to in-register parallel amyloid fibril formation in Light-chain amyloidosis, Chembiochem, 20, 1027-1031, https://doi.org/10.1002/cbic.201800732.

    Article  CAS  PubMed  Google Scholar 

  52. Son, M., and Wickner, R. B. (2018) Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants, Proc. Natl. Acad. Sci. USA, 115, E1184-E1193, https://doi.org/10.1073/pnas.1717495115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kishimoto, A., Hasegawa, K., Suzuki, H., Taguchi, H., Namba, K., et al. (2004) β-helix is a likely core structure of yeast prion Sup35 amyloid fibers, Biochem. Biophys. Res. Commun., 315, 739-745, https://doi.org/10.1016/j.bbrc.2004.01.117.

    Article  CAS  PubMed  Google Scholar 

  54. Wickner, R. B., Dyda, F., and Tycko, R. (2008) Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure, Proc. Natl. Acad. Sci. USA, 105, 2403-2408, https://doi.org/10.1073/pnas.0712032105.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cervantes, S. A., Bajakian, T. H., Soria, M. A., Falk, A. S., Service, R. J., et al. (2016) Identification and structural characterization of the N-terminal amyloid core of Orb2 isoform A, Sci. Rep., 6, 38265, https://doi.org/10.1038/srep38265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jayasinghe, S. A., and Langen, R. (2004) Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling, J. Biol. Chem., 279, 48420-48425, https://doi.org/10.1074/jbc.M406853200.

    Article  CAS  PubMed  Google Scholar 

  57. Reich, L., Becker, M., Seckler, R., and Weikl, T. R. (2009) In vivo folding efficiencies for mutants of the P22 tailspike β-helix protein correlate with predicted stability changes, Biophys. Chem., 141, 186-192, https://doi.org/10.1016/j.bpc.2009.01.015.

    Article  CAS  PubMed  Google Scholar 

  58. Maji, S. K., Wang, L., Greenwald, J., and Riek, R. (2009) Structure-activity relationship of amyloid fibrils, FEBS Lett., 583, 2610-2617, https://doi.org/10.1016/j.febslet.2009.07.003.

    Article  CAS  PubMed  Google Scholar 

  59. Hoshino, M., Katou, H., Hagihara, Y., Hasegawa, K., Naiki, H., and Goto, Y. (2002) Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange, Nat. Struct. Biol., 9, 332-336, https://doi.org/10.1038/nsb792.

    Article  CAS  PubMed  Google Scholar 

  60. Fitzpatrick, A. W. P., Debelouchina, G. T., Bayro, M. J., Clare, D. K., Caporini, M. A., et al. (2013) Atomic structure and hierarchical assembly of a cross-β amyloid fibril, Proc. Natl. Acad. Sci. USA, 110, 5468-5473, https://doi.org/10.1073/pnas.1219476110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sangwan, S., Zhao, A., Adams, K. L., Jayson, C. K., Sawaya, M. R., et al. (2017) Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS), Proc. Natl. Acad. Sci. USA, 114, 8770-8775, https://doi.org/10.1073/pnas.1705091114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tayeb-Fligelman, E., Salinas, N., Tabachnikov, O., and Landau, M. (2020) Staphylococcus aureus PSMα3 cross-α fibril polymorphism and determinants of cytotoxicity, Structure, 28, 301-313.e6, https://doi.org/10.1016/j.str.2019.12.006.

    Article  CAS  PubMed  Google Scholar 

  63. Xu, H., He, X., Zheng, H., Huang, L. J., Hou, F., et al. (2014) Structural basis for the prion-like MAVS filaments in antiviral innate immunity, Elife, 3, e01489, https://doi.org/10.7554/eLife.01489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kajava, A. V., and Steven, A. C. (2006) Beta-rolls, beta-helices, and other beta-solenoid proteins, Adv. Protein Chem., 73, 55-96, https://doi.org/10.1016/S0065-3233(06)73003-0.

    Article  CAS  PubMed  Google Scholar 

  65. Steinbacher, S., Seckler, R., Miller, S., Steipe, B., Huber, R., et al. (1994) Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer, Science, 265, 383-386, https://doi.org/10.1126/science.8023158.

    Article  CAS  PubMed  Google Scholar 

  66. Simkovsky, R., and King, J. (2006) An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin, Proc. Natl. Acad. Sci. USA, 103, 3575-3580, https://doi.org/10.1073/pnas.0509087103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schuler, B., Rachel, R., and Seckler, R. (1999) Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike beta-helix domain, J. Biol. Chem., 274, 18589-18596, https://doi.org/10.1074/jbc.274.26.18589.

    Article  CAS  PubMed  Google Scholar 

  68. Tycko, R., and Wickner, R. B. (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy, Acc. Chem. Res., 46, 1487-1496, https://doi.org/10.1021/ar300282r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, C., Sawaya, M. R., and Eisenberg, D. (2011) β2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages, Nat. Struct. Mol. Biol., 18, 49-55, https://doi.org/10.1038/nsmb.1948.

    Article  CAS  PubMed  Google Scholar 

  70. McParland, V. J., Kad, N. M., Kalverda, A. P., Brown, A., Kirwin-Jones, P., et al. (2000) Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro, Biochemistry, 39, 8735-8746, https://doi.org/10.1021/bi000276j.

    Article  CAS  PubMed  Google Scholar 

  71. Mateju, D., Franzmann, T. M., Patel, A., Kopach, A., Boczek, E. E., et al. (2017) An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function, EMBO J., 36, 1669-1687, https://doi.org/10.15252/embj.201695957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ida, M., Ando, M., Adachi, M., Tanaka, A., Machida, K., et al. (2016) Structural basis of Cu, Zn-superoxide dismutase amyloid fibril formation involves interaction of multiple peptide core regions, J. Biochem., 159, 247-260, https://doi.org/10.1093/jb/mvv091.

    Article  CAS  PubMed  Google Scholar 

  73. Baumer, K. M., Koone, J. C., and Shaw, B. F. (2020) Kinetic variability in seeded formation of ALS-linked SOD1 fibrils across multiple generations, ACS Chem. Neurosci., 11, 304-313, https://doi.org/10.1021/acschemneuro.9b00464.

    Article  CAS  PubMed  Google Scholar 

  74. Lazar, K. L., Miller-Auer, H., Getz, G. S., Orgel, J. P. R. O., and Meredith, S. C. (2005) Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure, Biochemistry, 44, 12681-12689, https://doi.org/10.1021/bi0509705.

    Article  CAS  PubMed  Google Scholar 

  75. Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., et al. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol., 273, 729-739, https://doi.org/10.1006/jmbi.1997.1348.

    Article  CAS  PubMed  Google Scholar 

  76. Wu, B., Peisley, A., Tetrault, D., Li, Z., Egelman, E. H., et al. (2014) Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I, Mol. Cell, 55, 511-523, https://doi.org/10.1016/j.molcel.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, H., He, X., Zheng, H., Huang, L. J., Hou, F., et al. (2015) Correction: Structural basis for the prion-like MAVS filaments in antiviral innate immunity, Elife, 4, e07546, https://doi.org/10.7554/eLife.07546.

    Article  PubMed Central  Google Scholar 

  78. Gallardo, R., Ranson, N. A., and Radford, S. E. (2020) Amyloid structures: much more than just a cross-β fold, Curr. Opin. Struct. Biol., 60, 7-16, https://doi.org/10.1016/j.sbi.2019.09.001.

    Article  CAS  PubMed  Google Scholar 

  79. Lutter, L., Aubrey, L. D., and Xue, W.-F. (2021) On the structural diversity and individuality of polymorphic amyloid protein assemblies, J. Mol. Biol., 433, 167124, https://doi.org/10.1016/j.jmb.2021.167124.

    Article  CAS  PubMed  Google Scholar 

  80. Zielinski, M., Röder, C., and Schröder, G. F. (2021) Challenges in sample preparation and structure determination of amyloids by Cryo-EM, J. Biol. Chem., 297, 100938, https://doi.org/10.1016/j.jbc.2021.100938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., et al. (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, 150, 339-350, https://doi.org/10.1016/j.cell.2012.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Crowther, R. A. (1991) Straight and paired helical filaments in Alzheimer’s disease have a common structural unit, Proc. Natl. Acad. Sci. USA, 88, 2288-2292, https://doi.org/10.1073/pnas.88.6.2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, V. M., Goedert, M., and Trojanowski, J. Q. (2001) Neurodegenerative tauopathies, Annu. Rev. Neurosci., 24, 1121-1159, https://doi.org/10.1146/annurev.neuro.24.1.1121.

    Article  CAS  PubMed  Google Scholar 

  84. Falcon, B., Zhang, W., Schweighauser, M., Murzin, A. G., Vidal, R., et al. (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold, Acta Neuropathol., 136, 699-708, https://doi.org/10.1007/s00401-018-1914-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Falcon, B., Zhang, W., Murzin, A. G., Murshudov, G., Garringer, H. J., et al. (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold, Nature, 561, 137-140, https://doi.org/10.1038/s41586-018-0454-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Falcon, B., Zivanov, J., Zhang, W., Murzin, A. G., Garringer, H. J., et al. (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules, Nature, 568, 420-423, https://doi.org/10.1038/s41586-019-1026-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, W., Tarutani, A., Newell, K. L., Murzin, A. G., Matsubara, T., et al. (2020) Novel tau filament fold in corticobasal degeneration, Nature, 580, 283-287, https://doi.org/10.1038/s41586-020-2043-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, W., Falcon, B., Murzin, A. G., Fan, J., Crowther, R. A., et al. (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases, Elife, 8, e43584, https://doi.org/10.7554/eLife.43584.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Eisenberg, D., and Jucker, M. (2012) The amyloid state of proteins in human diseases, Cell, 148, 1188-1203, https://doi.org/10.1016/j.cell.2012.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gremer, L., Schölzel, D., Schenk, C., Reinartz, E., Labahn, J., et al. (2017) Fibril structure of amyloid-β (1-42) by cryo-electron microscopy, Science, 358, 116-119, https://doi.org/10.1126/science.aao2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kollmer, M., Close, W., Funk, L., Rasmussen, J., Bsoul, A., et al. (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue, Nat. Commun., 10, 4760, https://doi.org/10.1038/s41467-019-12683-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lau, H. H. C., Ingelsson, M., and Watts, J. C. (2021) The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer’s disease, Acta Neuropathol., 142, 17-39, https://doi.org/10.1007/s00401-020-02201-2.

    Article  CAS  PubMed  Google Scholar 

  93. Tanaka, G., Yamanaka, T., Furukawa, Y., Kajimura, N., Mitsuoka, K., et al. (2019) Sequence- and seed-structure-dependent polymorphic fibrils of alpha-synuclein, Biochim. Biophys. Acta. Mol. Basis Dis., 1865, 1410-1420, https://doi.org/10.1016/j.bbadis.2019.02.013.

    Article  CAS  PubMed  Google Scholar 

  94. Li, B., Ge, P., Murray, K. A., Sheth, P., Zhang, M., et al. (2018) Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel, Nat. Commun., 9, 3609, https://doi.org/10.1038/s41467-018-05971-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luk, K. C., Covell, D. J., Kehm, V. M., Zhang, B., Song, I. Y., et al. (2016) Molecular and biological compatibility with host alpha-synuclein influences fibril pathogenicity, Cell Rep., 16, 3373-3387, https://doi.org/10.1016/j.celrep.2016.08.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guerrero-Ferreira, R., Taylor, N. M., Arteni, A.-A., Kumari, P., Mona, D., et al. (2019) Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy, Elife, 8, e48907, https://doi.org/10.7554/eLife.48907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P., and Eisenberg, D. S. (2019) Cryo-EM structures of four polymorphic TDP-43 amyloid cores, Nat. Struct. Mol. Biol., 26, 619-627, https://doi.org/10.1038/s41594-019-0248-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. White, H. E., Hodgkinson, J. L., Jahn, T. R., Cohen-Krausz, S., Gosal, W. S., et al. (2009) Globular tetramers of beta(2)-microglobulin assemble into elaborate amyloid fibrils, J. Mol. Biol., 389, 48-57, https://doi.org/10.1016/j.jmb.2009.03.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iadanza, M. G., Silvers, R., Boardman, J., Smith, H. I., Karamanos, T. K., et al. (2018) The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism, Nat. Commun., 9, 4517, https://doi.org/10.1038/s41467-018-06761-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chatani, E., Yagi, H., Naiki, H., and Goto, Y. (2012) Polymorphism of β2-microglobulin amyloid fibrils manifested by ultrasonication-enhanced fibril formation in trifluoroethanol, J. Biol. Chem., 287, 22827-22837, https://doi.org/10.1074/jbc.M111.333310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Groenning, M., Frokjaer, S., and Vestergaard, B. (2009) Formation mechanism of insulin fibrils and structural aspects of the insulin fibrillation process, Curr. Prot. Pept. Sci., 10, 509-528, https://doi.org/10.2174/138920309789352038.

    Article  CAS  Google Scholar 

  102. Sakalauskas, A., Ziaunys, M., and Smirnovas, V. (2019) Concentration-dependent polymorphism of insulin amyloid fibrils, PeerJ, 7, e8208, https://doi.org/10.7717/peerj.8208.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ishigaki, M., Morimoto, K., Chatani, E., and Ozaki, Y. (2020) Exploration of insulin amyloid polymorphism using raman spectroscopy and imaging, Biophys. J., 118, 2997-3007, https://doi.org/10.1016/j.bpj.2020.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Salinas, N., Colletier, J.-P., Moshe, A., and Landau, M. (2018) Extreme amyloid polymorphism in Staphylococcus aureus virulent PSMα peptides, Nat. Commun., 9, 3512, https://doi.org/10.1038/s41467-018-05490-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Goldsbury, C. S., Cooper, G. J., Goldie, K. N., Müller, S. A., Saafi, E. L., et al. (1997) Polymorphic fibrillar assembly of human amylin, J. Struct. Biol., 119, 17-27, https://doi.org/10.1006/jsbi.1997.3858.

    Article  CAS  PubMed  Google Scholar 

  106. Goldsbury, C., Goldie, K., Pellaud, J., Seelig, J., Frey, P., et al. (2000) Amyloid fibril formation from full-length and fragments of amylin, J. Struct. Biol., 130, 352-362, https://doi.org/10.1006/jsbi.2000.4268.

    Article  CAS  PubMed  Google Scholar 

  107. Röder, C., Kupreichyk, T., Gremer, L., Schäfer, L. U., Pothula, K. R., et al. (2020) Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils, Nat. Struct. Mol. Biol., 27, 660-667, https://doi.org/10.1038/s41594-020-0442-4.

    Article  CAS  PubMed  Google Scholar 

  108. Gallardo, R., Iadanza, M. G., Xu, Y., Heath, G. R., Foster, R., et al. (2020) Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly, Nat. Struct. Mol. Biol., 27, 1048-1056, https://doi.org/10.1038/s41594-020-0496-3.

    Article  CAS  PubMed  Google Scholar 

  109. Schmidt, M., Wiese, S., Adak, V., Engler, J., Agarwal, S., et al. (2019) Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis, Nat. Commun., 10, 5008, https://doi.org/10.1038/s41467-019-13038-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bansal, A., Schmidt, M., Rennegarbe, M., Haupt, C., Liberta, F., et al. (2021) AA amyloid fibrils from diseased tissue are structurally different from in vitro formed SAA fibrils, Nat. Commun., 12, 1013, https://doi.org/10.1038/s41467-021-21129-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baskakov, I. V., Katorcha, E., and Makarava, N. (2018) Prion strain-specific structure and pathology: a view from the perspective of glycobiology, Viruses, 10, 723, https://doi.org/10.3390/v10120723.

    Article  CAS  PubMed Central  Google Scholar 

  112. Vorberg, I. M. (2019) All the same? The secret life of prion strains within their target cells, Viruses, 11, 334, https://doi.org/10.3390/v11040334.

    Article  CAS  PubMed Central  Google Scholar 

  113. Bartz, J. C. (2016) Prion strain diversity, Cold Spring Harb. Perspect. Med., 6, a024349, https://doi.org/10.1101/cshperspect.a024349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carta, M., and Aguzzi, A. (2021) Molecular foundations of prion strain diversity, Curr. Opin. Neurobiol., 72, 22-31, https://doi.org/10.1016/j.conb.2021.07.010.

    Article  CAS  PubMed  Google Scholar 

  115. Glynn, C., Sawaya, M. R., Ge, P., Gallagher-Jones, M., Short, C. W., et al. (2020) Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core, Nat. Struct. Mol. Biol., 27, 417-423, https://doi.org/10.1038/s41594-020-0403-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cortez, L. M., Nemani, S. K., Duque Velásquez, C., Sriraman, A., Wang, Y., et al. (2021) Asymmetric-flow field-flow fractionation of prions reveals a strain-specific continuum of quaternary structures with protease resistance developing at a hydrodynamic radius of 15 nm, PLoS Pathog., 17, e1009703, https://doi.org/10.1371/journal.ppat.1009703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Peelaerts, W., Bousset, L., Van der Perren, A., Moskalyuk, A., Pulizzi, R., et al. (2015) α-synuclein strains cause distinct synucleinopathies after local and systemic administration, Nature, 522, 340-344, https://doi.org/10.1038/nature14547.

    Article  CAS  PubMed  Google Scholar 

  118. Van der Perren, A., Gelders, G., Fenyi, A., Bousset, L., Brito, F., et al. (2020) The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies, Acta Neuropathol., 139, 977-1000, https://doi.org/10.1007/s00401-020-02157-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schweighauser, M., Shi, Y., Tarutani, A., Kametani, F., Murzin, A. G., et al. (2020) Structures of α-synuclein filaments from multiple system atrophy, Nature, 585, 464-469, https://doi.org/10.1038/s41586-020-2317-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shahnawaz, M., Mukherjee, A., Pritzkow, S., Mendez, N., Rabadia, P., et al. (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy, Nature, 578, 273-277, https://doi.org/10.1038/s41586-020-1984-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lövestam, S., Schweighauser, M., Matsubara, T., Murayama, S., Tomita, T., et al. (2021) Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy, FEBS Open Bio, 11, 999-1013, https://doi.org/10.1002/2211-5463.13110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Petkova, A. T., Leapman, R. D., Guo, Z., Yau, W.-M., Mattson, M. P., et al. (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils, Science, 307, 262-265, https://doi.org/10.1126/science.1105850.

    Article  CAS  PubMed  Google Scholar 

  123. Ghosh, U., Thurber, K. R., Yau, W.-M., and Tycko, R. (2021) Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue, Proc. Natl. Acad. Sci. USA, 118, e2023089118, https://doi.org/10.1073/pnas.2023089118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kang, S.-G., Eskandari-Sedighi, G., Hromadkova, L., Safar, J. G., and Westaway, D. (2020) Cellular biology of tau diversity and pathogenic conformers, Front. Neurol., 11, 590199, https://doi.org/10.3389/fneur.2020.590199.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast, Genetics, 191, 1041-1072, https://doi.org/10.1534/genetics.111.137760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Derkatch, I. L., Bradley, M. E., Zhou, P., and Liebman, S. W. (1999) The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast, Curr. Genet., 35, 59-67, https://doi.org/10.1007/s002940050433.

    Article  CAS  PubMed  Google Scholar 

  127. King, C. Y. (2001) Supporting the structural basis of prion strains: Induction and identification of [PSI] variants, J. Mol. Biol., 307, 1247-1260, https://doi.org/10.1006/jmbi.2001.4542.

    Article  CAS  PubMed  Google Scholar 

  128. Huang, Y.-W., and King, C.-Y. (2020) A complete catalog of wild-type Sup35 prion variants and their protein-only propagation, Curr. Genet., 66, 97-122, https://doi.org/10.1007/s00294-019-01003-8.

    Article  CAS  PubMed  Google Scholar 

  129. Dergalev, A. A., Alexandrov, A. I., Ivannikov, R. I., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2019) Yeast Sup35 prion structure: two types, four parts, many variants, Int. J. Mol. Sci., 20, 2633, https://doi.org/10.3390/ijms20112633.

    Article  CAS  PubMed Central  Google Scholar 

  130. Ghosh, R., Dong, J., Wall, J., and Frederick, K. K. (2018) Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies, FEMS Yeast Res., 18, foy059, https://doi.org/10.1093/femsyr/foy059.

    Article  CAS  PubMed Central  Google Scholar 

  131. Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J. S. (2004) Conformational variations in an infectious protein determine prion strain differences, Nature, 428, 323-328, https://doi.org/10.1038/nature02392.

    Article  CAS  PubMed  Google Scholar 

  132. King, C.-Y., Wang, H.-L., and Chang, H.-Y. (2006) Transformation of yeast by infectious prion particles, Methods, 39, 68-71, https://doi.org/10.1016/j.ymeth.2006.04.003.

    Article  CAS  PubMed  Google Scholar 

  133. Krishnan, R., and Lindquist, S. L. (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity, Nature, 435, 765-772, https://doi.org/10.1038/nature03679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Terry, C., Harniman, R. L., Sells, J., Wenborn, A., Joiner, S., et al. (2019) Structural features distinguishing infectious ex vivo mammalian prions from non-infectious fibrillar assemblies generated in vitro, Sci. Rep., 9, 376, https://doi.org/10.1038/s41598-018-36700-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Barinova, K. V., Kuravsky, M. L., Arutyunyan, A. M., Serebryakova, M. V., Schmalhausen, E. V., et al. (2017) Dimerization of Tyr136Cys alpha-synuclein prevents amyloid transformation of wild type alpha-synuclein, Int. J. Biol. Macromol., 96, 35-43, https://doi.org/10.1016/j.ijbiomac.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-34-90117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav A. Bondarev.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain description of studies with participation of human or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matiiv, A.B., Trubitsina, N.P., Matveenko, A.G. et al. Structure and Polymorphism of Amyloid and Amyloid-Like Aggregates. Biochemistry Moscow 87, 450–463 (2022). https://doi.org/10.1134/S0006297922050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922050066

Keywords

Navigation