Skip to main content
Log in

Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tumor emergence and progression is complicated by the dual role of reactive oxygen species (ROS). Low concentrations of ROS are essential for many intracellular metabolic processes and cell proliferation, while excessive ROS generation disrupts the mechanisms of cancer suppression, leading to the cell damage and death. A long-term imbalance in the ROS/antioxidant ratio and upregulation of the ROS generation due to the reduced efficacy of the antioxidant defense system cause chronic oxidative stress resulting in the damage of proteins, lipid, and DNA molecules and cancer development. Numerous data demonstrate that prostate cancer (the most common cancer in males) is associated with the development of oxidative stress. However, the reasons for the emergence of prostate cancer, as well as changes in the redox signaling and cellular redox homeostasis in this disease, are still poorly understood. The review examines the role of prooxidant and antioxidant enzyme systems, the imbalance in their activity leading to the oxidative stress development, changes in the key components of redox signaling, and the role of microRNAs in the modulation of redox status of cancer cells in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

androgen receptor

COX:

cyclooxygenase

JNK:

c-Jun N-terminal kinase

LOX:

lipoxygenase

NF-κB:

nuclear factor κB

NOX:

NADPH oxidase

Nrf2:

nuclear factor-erythroid factor 2-related factor 2

PCa:

prostate cancer

ROS:

reactive oxygen species

STAT3:

signal transducer and activator of transcription 3

References

  1. Rawla, P. (2019) Epidemiology of prostate cancer, World J. Oncol., 10, 63-89, https://doi.org/10.14740/wjon1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayes, J. D., Dinkova-Kostova, A. T., and Tew, K. D. (2020) Oxidative stress in cancer, Cancer Cell, 38, 167-197, https://doi.org/10.1016/j.ccell.2020.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Staal, J., and Beyaert, R. (2018) Inflammation and NF-κB signaling in prostate cancer: mechanisms and clinical implications, Cells, 7, 122, https://doi.org/10.3390/cells7090122.

    Article  CAS  PubMed Central  Google Scholar 

  4. Tan, B. L., and Norhaizan, M. E. (2021) Oxidative stress, diet and prostate cancer, World J. Mens Health, 39, 195-207, https://doi.org/10.5534/wjmh.200014.

    Article  PubMed  Google Scholar 

  5. Shukla, S., Srivastava, J. K., Shankar, E., Kanwal, R., Nawab, A., et al. (2020) Oxidative stress and antioxidant status in high-risk prostate cancer subjects, Diagnostics (Basel), 10, 126, https://doi.org/10.3390/diagnostics10030126.

    Article  CAS  Google Scholar 

  6. Fahmy, O., Alhakamy, N. A., Rizg, W. Y., Bagalagel, A., Alamoudi, A. J., et al. (2021) Updates on molecular and biochemical development and progression of prostate cancer, J. Clin. Med., 10, 5127, https://doi.org/10.3390/jcm10215127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szewczyk-Golec, K., Tyloch, J., and Czuczejko, J. (2015) Antioxidant defense system in prostate adenocarcinoma and benign prostate hyperplasia of elderly patients, Neoplasma, 62, 119-123, https://doi.org/10.4149/neo_2015_015.

    Article  CAS  PubMed  Google Scholar 

  8. D’Souza, L. C., Mishra, S., Chakraborty, A., Shekher, A., Sharma, A., et al. (2020) Oxidative stress and cancer development: are noncoding RNAs the missing links? Antioxid. Redox. Signal, 33, 1209-1229, https://doi.org/10.1089/ars.2019.7987.

    Article  CAS  PubMed  Google Scholar 

  9. Kalinina, E. V., Ivanova-Radkevich, V. I., and Chernov, N. N. (2019) Role of MicroRNAs in the regulation of redox-dependent processes, Biochemistry (Moscow), 84, 1233-1246, https://doi.org/10.1134/S0006297919110026.

    Article  CAS  Google Scholar 

  10. Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., et al. (2019) ROS generation and antioxidant defense systems in normal and malignant cells, Oxid. Med. Cell Longev., 2019, 6175804, https://doi.org/10.1155/2019/6175804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sajjaboontawee, N., Supasitthumrong, T., Tunvirachaisakul, C., Nantachai, K., Snabboon, T., et al. (2020) Lower thiol, glutathione, and glutathione peroxidase levels in prostate cancer: a meta-analysis study, Aging Male, 23, 1533-1544, https://doi.org/10.1080/13685538.2020.1858048.

    Article  CAS  PubMed  Google Scholar 

  12. Martignano, F., Gurioli, G., Salvi, S., Calistri, D., Costantini, M., et al. (2016) GSTP1 methylation and protein expression in prostate cancer: diagnostic implications, Dis. Markers, 2016, 4358292, https://doi.org/10.1155/2016/4358292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Debelec-Butuner, B., Bostancı, A., Ozcan, F., Singin, O., Karamil, S., et al. (2019) Oxidative DNA damage-mediated genomic heterogeneity is regulated by NKX3.1 in prostate cancer, Cancer Invest., 37, 113-126, https://doi.org/10.1080/07357907.2019.1576192.

    Article  CAS  PubMed  Google Scholar 

  14. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., et al. (2018) Oxidative stress, aging, and diseases, Clin. Interv. Aging, 13, 757-772, https://doi.org/10.2147/CIA.S158513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L., Wang, X., Cueto, R., Effi, C., Zhang, Y., et al. (2019) Biochemical basis and metabolic interplay of redox regulation, Redox Biol., 26, 101284, https://doi.org/10.1016/j.redox.2019.101284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohammadi, M., Irani, S., Salahshourifar, I., Hosseini, J., Moradi, A., et al. (2020) Investigation of GSTP1 and epigenetic regulators expression pattern in a population of Iranian patients with prostate cancer, Hum. Antibodies, 28, 327-334, https://doi.org/10.3233/HAB-200424.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Y., Fuentes, F., Shu, L., Wang, C., Pung, D., et al. (2017) Epigenetic CpG methylation of the promoter and reactivation of the expression of GSTP1 by astaxanthin in human prostate LNCaP cells, AAPS J., 19, 421-430, https://doi.org/10.1208/s12248-016-0016-x.

    Article  CAS  PubMed  Google Scholar 

  18. Fukai, T., and Ushio-Fukai, M. (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases, Antioxid. Redox Signal, 15, 1583-1606, https://doi.org/10.1089/ars.2011.3999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dhar, S. K., Tangpong, J., Chaiswing, L., Oberley, T. D., and Clair, D. K. (2011) Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages, Cancer Res., 71, 6684-6695, https://doi.org/10.1158/0008-5472.CAN-11-1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy, K., Wu, Y., Meitzler, J. L., Juhasz, A., Liu, H., et al. (2015) NADPH oxidases and cancer, Clin. Sci. (Lond), 128, 863-875, https://doi.org/10.1042/CS20140542.

    Article  CAS  Google Scholar 

  21. Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., et al. (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch, Proc. Natl. Acad. Sci. USA, 99, 715-720, https://doi.org/10.1073/pnas.022630199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deep, G., Kumar, R., Jain, A. K., Dhar, D., Panigrahi, G. K., et al. (2016) Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity, Sci. Rep., 6, 23135, https://doi.org/10.1038/srep23135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamura, R. E., Hunger, A., Fernandes, D. C., Laurindo, F. R., Costanzi-Strauss, E., et al. (2017) Induction of oxidants distinguishes susceptibility of prostate carcinoma cell lines to p53 gene transfer mediated by an improved adenoviral vector, Hum. Gene Ther., 28, 639-653, https://doi.org/10.1089/hum.2016.139.

    Article  CAS  PubMed  Google Scholar 

  24. Lim, S. D., Sun, C. Q., Lambeth, J. D., Marshall, F., Amin, M., et al. (2005) Increased Nox1 and hydrogen peroxide in prostate cancer, Prostate, 62, 200-207, https://doi.org/10.1002/pros.20137.

    Article  CAS  PubMed  Google Scholar 

  25. Juhasz, A., Ge, Y., Markel, S., Chiu, A., Matsumoto, L., et al. (2009) Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues, Free Radic. Res., 43, 523-532, https://doi.org/10.1080/10715760902918683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Höll, M., Koziel, R., Schäfer, G., Pircher, H., Pauck, A., et al. (2016) ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells, Mol. Carcinog., 55, 27-39, https://doi.org/10.1002/mc.22255.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, B., Koul, S., Khandrika, L., Meacham, R. B., and Koul, H. K. (2008) Oxidative stress in inherent in prostate cancer cells and is required for aggressive phenotype, Cancer Res., 68, 1777-1785, https://doi.org/10.1158/0008-5472.CAN-07-5259.

    Article  CAS  PubMed  Google Scholar 

  28. Brar, S. S., Corbib, Z., Kennedy, T. P., Hemendinger, R., Thornton, L., et al. (2003) NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU145 prostate cancer cells, Am. J. Physiol. Cell Physiol., 285, 353-369, https://doi.org/10.1152/ajpcell.00525.2002.

    Article  Google Scholar 

  29. Pettigrew, C. A., Clerkin, J. S., and Cotter, T. G. (2012) DUOX enzyme activity promotes AKT signalling in prostate cancer cells, Anticancer Res., 32, 5175-5181.

    CAS  PubMed  Google Scholar 

  30. Lu, J. P., Monardo, L., Bryskin, I., Hou, Z. F., Trachtenberg, J., et al. (2010) Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase, Prostate Cancer Prostatic Dis., 13, 39-46, https://doi.org/10.1038/pcan.2009.24.

    Article  CAS  PubMed  Google Scholar 

  31. Lu, J. P., Hou, Z. F., Duivenvoorden, W. C., Whelan, K., Honig, A., et al. (2012) Adiponectin inhibits oxidative stress in human prostate carcinoma cells, Prostate Cancer Prostatic Dis., 15, 28-35, https://doi.org/10.1038/pcan.2011.53.

    Article  CAS  PubMed  Google Scholar 

  32. Speed, N., and Blair, I. A. (2011) Cyclooxygenase- and lipoxygenase-mediated DNA damage, Cancer Metastasis Rev., 30, 437-447, https://doi.org/10.1007/s10555-011-9298-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O’Byrne, K., et al. (2007) Lipoxygenase metabolism: roles in tumor progression and survival, Cancer Metastasis Rev., 26, 503-524, https://doi.org/10.1007/s10555-007-9098-3.

    Article  CAS  PubMed  Google Scholar 

  34. Saboormaleki, S., Sadeghian, H., Bahrami, A. R., Orafaie, A., and Matin, M. M. (2018) 7-Farnesyloxycoumarin exerts anti-cancer effects on a prostate cancer cell line by 15-LOX-1 inhibition, Arch. Iran Med., 21, 251-259.

    PubMed  Google Scholar 

  35. Iranpour, S., Al-Mosawi, A. K. M., Bahrami, A. R., Sadeghian, H., and Matin, M. M. (2021) Investigating the effects of two novel 4-MMPB analogs as potent lipoxygenase inhibitors for prostate cancer treatment, J. Biol. Res. (Thessalon), 28, 10, https://doi.org/10.1186/s40709-021-00141-w.

    Article  CAS  Google Scholar 

  36. Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., et al. (2010) 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells, Exp. Cell Res., 316, 1706-1715, https://doi.org/10.1016/j.yexcr.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarveswaran, S., Chakraborty, D., Chitale, D., Sears, R., and Ghosh, J. (2015) Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells, J. Biol. Chem., 290, 4994-5006, https://doi.org/10.1074/jbc.M114.599035.

    Article  CAS  PubMed  Google Scholar 

  38. Hsi, L. C., Wilson, L. C., and Eling, T. E. (2002) Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma, J. Biol. Chem., 277, 40549-40556, https://doi.org/10.1074/jbc.M203522200.

    Article  CAS  PubMed  Google Scholar 

  39. Gondek, T., Szajewski, M., Szefel, J., Aleksandrowicz-Wrona, E., Skrzypczak-Jankun, E., et al. (2014) Evaluation of 12-lipoxygenase (12-LOX) and plasminogen activator inhibitor 1 (PAI-1) as prognostic markers in prostate cancer, Biomed. Res. Int., 2014, 102478, https://doi.org/10.1155/2014/102478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, X., Porter, A. T., and Honn, K. V. (1997) Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications, Adv. Exp. Med. Biol., 407, 41-53, https://doi.org/10.1007/978-1-4899-1813-0_7.

    Article  CAS  PubMed  Google Scholar 

  41. Matsuyama, M., Yoshimura, R., Mitsuhashi, M., Hase, T., Tsuchida, K., et al. (2004) Expression of lipoxygenase in human prostate cancer and growth reduction by its inhibitors, Int. J. Oncol., 24, 821-827, https://doi.org/10.3892/ijo.24.4.821.

    Article  CAS  PubMed  Google Scholar 

  42. Goftari, S. N., Sadeghian, H., Bahrami, A. R., Maleki, F., and Matin, M. M. (2019) Stylosin and some of its synthetic derivatives induce apoptosis in prostate cancer cells as 15-lipoxygenase enzyme inhibitors, Naunyn Schmiedebergs Arch. Pharmacol., 392, 1491-1502, https://doi.org/10.1007/s00210-019-01689-0.

    Article  CAS  PubMed  Google Scholar 

  43. Hosseinymehr, M., Matin, M. M., Sadeghian, H., Bahrami, A. R., and Kaseb-Mojaver, N. (2016) 8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity, Anticancer Drugs, 27, 854-862, https://doi.org/10.1097/CAD.0000000000000399.

    Article  CAS  PubMed  Google Scholar 

  44. Robertson, H., Dinkova-Kostova, A. T., and Hayes, J. D. (2020) NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis cancers, Cancers, 12, 3609, https://doi.org/10.3390/cancers12123609.

    Article  CAS  PubMed Central  Google Scholar 

  45. Zimta, A.-A., Cenariu, D., Irimie, A., Magdo, L., Nabavi, S. M., et al. (2019) The role of Nrf2 activity in cancer development and progression, Cancers, 11, 1755, https://doi.org/10.3390/cancers11111755.

    Article  CAS  PubMed Central  Google Scholar 

  46. Sekine, H., Motohashi, H. (2021) Roles of CNC transcription factors NRF1 and NRF2 in cancer, Cancers (Basel), 13, 541, https://doi.org/10.3390/cancers13030541.

    Article  CAS  Google Scholar 

  47. Taguchi, K., and Yamamoto, M. (2021) The KEAP1-NRF2 system as a molecular target of cancer treatment, Cancers (Basel), 13, 46, https://doi.org/10.3390/cancers13010046.

    Article  CAS  Google Scholar 

  48. Zucker, S. N., Fink, E. E., Bagati, A., Mannava, S., Bianchi-Smiraglia, A., et al. (2014) Nrf2 amplifies oxidative stress via induction of Klf9, Mol Cell, 53, 916-928, https://doi.org/10.1016/j.molcel.2014.01.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barve, A., Khor, T. O., Nair, S., Reuhl, K., Suh, N., et al. (2009) Tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice, Int. J. Cancer, 124, 1693-1699, https://doi.org/10.1002/ijc.24106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frohlich, D. A., McCabe, M. T., Arnold, R. S., and Day, M. L. (2008) The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis, Oncogene, 27, 4353-4362, https://doi.org/10.1038/onc.2008.79.

    Article  CAS  PubMed  Google Scholar 

  51. Wardyn, J. D., Ponsford, A. H., and Sanderson, C. M. (2015) Dissecting molecular cross-talk between Nrf2 and NF‑κB response pathways, Biochem. Soc. Trans., 43, 621-626, https://doi.org/10.1042/BST20150014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buelna-Chontal, M., and Zazueta, C. (2013) Redox activation of Nrf2 and NF‑κB: a double end sword? Cell Signal, 25, 2548-2557, https://doi.org/10.1016/j.cellsig.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  53. Taniguchi, K., and Karin, M. (2018) NF-κB, inflammation, immunity and cancer: coming of age, Nat. Rev. Immunol., 18, 309-324, https://doi.org/10.1038/nri.2017.142.

    Article  CAS  PubMed  Google Scholar 

  54. Jin, R., Yi, Y., Yull, F. E., Blackwell, T. S., Clark, P. E., et al. (2014) NF-κB gene signature predicts prostate cancer progression, Cancer Res., 74, 2763-2772, https://doi.org/10.1158/0008-5472.CAN-13-2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grivennikov, S. I., and Karin, M. (2010) Dangerous liaisons: STAT3 and NF‑κB collaboration and crosstalk in cancer, Cytokine Growth Factor Rev., 21, 11-19, https://doi.org/10.1016/j.cytogfr.2009.11.005.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang, L. H., Hao, Y. L., and Zhu, J. W. (2019) Expression and prognostic value of HER‑2/neu, STAT3 and SOCS3 in hepatocellular carcinoma, Clin. Res. Hepatol. Gastroenterol., 43, 282-291, https://doi.org/10.1016/j.clinre.2018.09.011.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X., Wang, B., Zhou, L., Wang, X., Veeraraghavan, V. P., et al. (2020) Ganoderma lucidum put forth anti-tumor activity against PC-3 prostate cancer cells via inhibition of Jak-1/STAT-3 activity, Saudi. J. Biol. Sci., 27, 2632-2637, https://doi.org/10.1016/j.sjbs.2020.05.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo, Y., Zang, Y., Lv, L., Cai, F., Qian, T., et al. (2017) IL‑8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NF‑κB pathway in prostate cancer, Mol. Med. Rep., 16, 9035-9042, https://doi.org/10.3892/mmr.2017.7747.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, W., Li, P., Liu, Y., Yang, Y., Ye, X., et al. (2018) Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells, J. Exp. Clin. Cancer Res., 37, 309, https://doi.org/10.1186/s13046-018-0987-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gudkov, A. V., and Komarova, E. A. (2016) p53 and the carcinogenicity of chronic inflammation, Cold Spring Harb. Perspect. Med., 6, a026161, https://doi.org/10.1101/cshperspect.a026161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schneider, G., Henrich, A., Greiner, G., Wolf, V., Lovas, A., et al. (2010) Crosstalk between stimulated NF-kappaB and the tumor suppressor p53, Oncogene, 29, 2795-2806, https://doi.org/10.1038/onc.2010.46.

    Article  CAS  PubMed  Google Scholar 

  62. Shankar, E., Zhang, A., Franco, D., and Gupta, S. (2017) Betulinic acid-mediated apoptosis in human prostate cancer cells involves p53 and nuclear factor-kappa B (NF-κB) pathways, Molecules, 22, 264, https://doi.org/10.3390/molecules22020264.

    Article  CAS  PubMed Central  Google Scholar 

  63. Dong, J. T. (2006) Prevalent mutations in prostate cancer, J. Cell Biochem., 97, 433-447, https://doi.org/10.1002/jcb.20696.

    Article  CAS  PubMed  Google Scholar 

  64. Meek, D. W. (2015) Regulation of the p53 response and its relationship to cancer, Biochem. J., 469, 325-346, https://doi.org/10.1042/BJ20150517.

    Article  CAS  PubMed  Google Scholar 

  65. Wan, J., Zhang, J., and Zhang, J. (2018) Expression of p53 and its mechanism in prostate cancer, Oncol. Lett., 16, 378-382, https://doi.org/10.3892/ol.2018.8680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, D., Gao, Z., and Zhang, X. (2018) Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling, Med. Sci. Monit., 24, 8970-8976, https://doi.org/10.12659/MSM.913290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Papa, S., Zazzeroni, F., Pham, C. G., Bubici, C., and Franzoso, G. (2004) Linking JNK signaling to NF-κB: A key to survival, J. Cell Sci., 117, 5197-5208, https://doi.org/10.1242/jcs.01483.

    Article  CAS  PubMed  Google Scholar 

  68. Xu, R., and Hu, J. (2020) The role of JNK in prostate cancer progression and therapeutic strategies, Biomed. Pharmacother., 121, 109679, https://doi.org/10.1016/j.biopha.2019.109679.

    Article  CAS  PubMed  Google Scholar 

  69. Nikoloudaki, G., Brooks, S., Peidl, A. P., Tinney, D., and Hamilton, D. W. (2020) JNK signaling as a key modulator of soft connective tissue physiology, pathology, and healing, Int. J. Mol. Sci., 21, 1015, https://doi.org/10.3390/ijms21031015.

    Article  CAS  PubMed Central  Google Scholar 

  70. Takata, T., Araki, S., Tsuchiya, Y., and Watanabe, Y. (2020) Oxidative stress orchestrates MAPK and nitric-oxide synthase signal, Int. J. Mol. Sci., 21, 8750, https://doi.org/10.3390/ijms21228750.

    Article  CAS  PubMed Central  Google Scholar 

  71. Dou, Y., Jiang, X., Xie, H., He, J., and Xiao, S. (2019) The Jun N-terminal kinases signaling pathway plays a “seesaw” role in ovarian carcinoma: a molecular aspect, J. Ovarian Res., 12, 99, https://doi.org/10.1186/s13048-019-0573-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Acosta, A. M., and Kadko, S. S. (2016) Mitogen-activated protein kinase signaling pathway in cutaneous melanoma: An updated review, Arch. Pathol. Lab. Med., 140, 1290-1296, https://doi.org/10.5858/arpa.2015-0475-RS.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, J., Xiao, Q., Chen, X., Tong, S., Sun, J., et al. (2018) LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway, Cell Death. Dis., 9, 197, https://doi.org/10.1038/s41419-017-0207-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lv, J. M., Chen, L., Gao, Y., Huang, H., Pan, X. W., et al. (2018) PPP5C promotes cell proliferation and survival in human prostate cancer by regulating of the JNK and ERK1/2 phosphorylation, Onco. Ther., 11, 5797-5809, https://doi.org/10.2147/OTT.S161280.

    Article  CAS  Google Scholar 

  75. Chambers, J., Pachori, A., Howard, S., Iqbal, S., and LoGrasso, P. (2012) Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats, J. Boil. Chem., 288, 4000-4011, https://doi.org/10.1074/jbc.M112.406777.

    Article  CAS  Google Scholar 

  76. Günther, J. K., Nikolajevic, A., Ebner, S., Troppmair, J., and Khalid, S. (2020) Rigosertib-activated JNK1/2 eliminate tumor cells through p66Shc activation, Biology (Basel), 9, 99, https://doi.org/10.3390/biology9050099.

    Article  CAS  Google Scholar 

  77. Galimov, E. R. (2010) The role of p66shc in oxidative stress and apoptosis, Acta Naturae, 2, 44-51, https://doi.org/10.32607/20758251-2010-2-4-44-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eid, R. A., Zaki, M. S. A., Eldeen, M. A., Alshehri, M. M., Shati, A. A., et al. (2020) Exendin-4 protects the hearts of rats from ischaemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p66Shc/NADPH axis, Clin. Exper. Pharmacol. Physiol., 47, 1240-1253, https://doi.org/10.1111/1440-1681.13299.

    Article  CAS  Google Scholar 

  79. Han, C., Wang, Z., Xu, Y., Chen, S., Han, Y., et al. (2020) Roles of reactive oxygen species in biological behaviors of prostate cancer, Biomed. Res. Int., 2020, 1269624, https://doi.org/10.1155/2020/1269624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Khurana, N., and Sikka, S. C. (2018) Targeting crosstalk between Nrf-2, NF-κB and androgen receptor signaling in prostate cancer, Cancers, 10, 352, https://doi.org/10.3390/cancers10100352.

    Article  CAS  PubMed Central  Google Scholar 

  81. Yu, J., Zhou, P., Du, W., Xu, R., Yan, G., et al. (2020) Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer, Biochem. Pharmacol., 177, 113946, https://doi.org/10.1016/j.bcp.2020.113946.

    Article  CAS  PubMed  Google Scholar 

  82. Schultz, M. A., Hagan, S. S., Datta, A., Zhang, Y., Freeman, M. L., et al. (2014) Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells, PLoS One, 9, e87204, https://doi.org/10.1371/journal.pone.0087204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Uzuner, E., Ulu, G. T., Gürler, S. B., and Baran, Y. (2022) The role of miRNA in cancer: pathogenesis, diagnosis, and treatment, Methods Mol. Biol., 2257, 375-422, https://doi.org/10.1007/978-1-0716-1170-8_18.

    Article  PubMed  Google Scholar 

  84. Ali Syeda, Z., Langden, S. S., Munkhzul, C., Lee, M., and Song, S. (2020) Regulatory mechanism of microRNA expression in cancer, J. Int. J Mol. Sci., 21, 1723, https://doi.org/10.3390/ijms21051723.

    Article  CAS  Google Scholar 

  85. Xu, Z., Zhang, Y., Ding, J., Hu, W., Tan, C., et al. (2018) miR-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells, Mol. Ther. Nucleic Acids, 13, 64-77, https://doi.org/10.1016/j.omtn.2018.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martino, T., Kudrolli, T. A., Kumar, B., Salviano, I., Mencalha, A., et al. (2018) The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress, Prostate, 78, 140-151, https://doi.org/10.1002/pros.23455.

    Article  CAS  PubMed  Google Scholar 

  87. Yang, Z., Chen, J.-S., Wen, J.-K., Gao, H.-T., Zheng, B., et al. (2017) Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel, J. Exp. Clin. Cancer Res., 36, 178, https://doi.org/10.1186/s13046-017-0649-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jajoo, S., Mukherjea, D., Kaur, T., Sheehan, K. E., Sheth, S., et al. (2013) Essential role of NADPH oxidase-dependent reactive oxygen species generation in regulating microRNA-21 expression and function in prostate cancer, Antioxid. Redox Signal., 19, 1863-1876, https://doi.org/10.1089/ars.2012.4820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, Q.-Q., Zheng, B., Weng, G.-B., Yang, H.-M., Ren, Y., et al. (2019) Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer, J. Cell Biochem., 120, 10215-10227, https://doi.org/10.1002/jcb.28306.

    Article  CAS  PubMed  Google Scholar 

  90. Kim, H-K., Lee, H-Y., Riaz, T. A., Bhattarai, K. R., Chaudhary, M., et al. (2021) Chalcone suppresses tumor growth through NOX4-IRE1α sulfonation-RIDD-miR-23b axis, Redox Biol., 40, 101853, https://doi.org/10.1016/j.redox.2021.101853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hao, Y., Gu, X., Zhao, Y., Greene, S., Sha, W., et al. (2011) Enforced expression of miR‑101 inhibits prostate cancer cell growth by modulating the COX‑2 pathway in vivo, Cancer Prev. Res. (Phila), 4, 1073-1083, https://doi.org/10.1158/1940-6207.CAPR-10-0333.

    Article  CAS  Google Scholar 

  92. Madrigal-Martínez, A., Constâncio, V., Lucio-Cazaña, F. J., and Fernández-Martínez, A. B. (2019) Prostaglandine2 stimulates cancer-related phenotypes in prostate cancer PC3 cells through cyclooxygenase-2, J. Cell Physiol., 234, 7548-7559, https://doi.org/10.1002/jcp.27515.

    Article  CAS  PubMed  Google Scholar 

  93. Josson, S., Sung, S-Y., Lao, K., Chung, L. W. K., and Johnstone, P. A. S. (2008) Radiation modulation of microRNA in prostate cancer cell lines, Prostate, 68, 1599-1606, https://doi.org/10.1002/pros.20827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gandellini, P., Giannoni, E., Casamichele, A., Taddei, M. L., Callari, M., et al. (2014) miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts, Antioxid. Redox Signal., 20, 1045-1059, https://doi.org/10.1089/ars.2013.5292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zang, Y., Zhu, J., Li, Q., Tu, J., Li, X., et al. (2020) miR-137-3p modulates the progression of prostate cancer by regulating the JNK3/EZH2 axis, Onco. Targets Ther., 13, 7921-7932, https://doi.org/10.2147/OTT.S256161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meitzler, J. L., Antony, S., Wu, Y., Juhasz, A., Liu, H., et al. (2014) NADPH oxidases: a perspective on reactive oxygen species production in tumor biology, Antioxid. Redox Signal., 20, 2873-2889, https://doi.org/10.1089/ars.2013.5603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kumar, S., Singh, R. K., and Meena, R. (2016) Emerging targets for radioprotection and radiosensitization in radiotherapy, Tumour Biol., 37, 11589-11609, https://doi.org/10.1007/s13277-016-5117-8.

    Article  CAS  PubMed  Google Scholar 

  98. Sarveswaran, S., Varma, N. R. S., Morisetty, S., and Ghosh, J. (2019) Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase, Oncotarget, 10, 424-436, https://doi.org/10.18632/oncotarget.13422.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wartenberg, M., Hoffmann, E., Schwindt, H., Grünheck, F., Petros, J., et al. (2005) Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids, FEBS Lett., 579, 4541-4549, https://doi.org/10.1016/j.febslet.2005.06.078.

    Article  CAS  PubMed  Google Scholar 

  100. Jones, K. J., Chetram, M. A., Bethea, D. A., Bryant, L. K., Odero-Marah, V., et al. (2013) Cysteine (C)-X-C receptor 4 regulates NADPH oxidase-2 during oxidative stress in prostate cancer cells, Cancer Microenviron., 6, 277-288, https://doi.org/10.1007/s12307-013-0136-0.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the RUDN Strategic Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Kalinina.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain description of studies with the involvement of human or animal subjects performed by the any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.V., Gavriliuk, L.A. & Pokrovsky, V.S. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. Biochemistry Moscow 87, 413–424 (2022). https://doi.org/10.1134/S0006297922050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922050030

Keywords

Navigation