Skip to main content
Log in

2-Amino-Pyrrole-Carboxylate Attenuates Homology-Mediated DNA Repair and Sensitizes Cancer Cells to Doxorubicin

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Despite a high efficacy of chemotherapy in cancer treatment, acquired resistance of tumors to certain chemotherapeutic agents and frequent side effects remain the major factors of unfavorable prognosis in most cancer patients with unresectable, metastatic and recurrent forms of the disease. The discovery of novel molecular targets in tumors and development of new therapeutic approaches to enhance the efficiency of chemotherapeutic agents remain the biggest challenges in current oncology. Here we examined the ability of pyrrole-based heterocyclic compound 2-APC to sensitize tumor cells to the topoisomerase II inhibitor doxorubicin. The study was performed on human cancer cell lines treated with 2-APC, paclitaxel, and doxorubicin. Expression of DNA repair was investigated by Western blotting, whereas protein–protein interactions were examined by co-immunoprecipitation. The synergism between the chemotherapeutic agents was assessed with the Synergy Finder program. Doxorubicin exhibited moderate cytotoxic effect against cancer cell lines (in particular, osteosarcoma cell lines). 2-APC in non-toxic concentrations substantially potentiated the cytotoxic effect of doxorubicin and induced apoptosis of cancer cells. This activity of 2-APC was due to its ability to impair DNA damage repair by decreasing the content of Rad51 recombinase via promoting its proteasomal degradation. Similar effects were observed for paclitaxel, which affects tubulin polymerization. Therefore, chemotherapeutic agents and chemical compounds interfering with the microtubule dynamics can potentiate the cytotoxic effects of DNA-damaging chemotherapeutic agents via impairment of DNA damage repair mechanisms in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

2-APC:

2-amino-pyrrole-carboxylate

GFP:

green fluorescence protein

HeLa:

human cervical adenocarcinoma cell line

U-2 OS and U-2 OS DR GFP:

human osteosarcoma cell lines

References

  1. Benjamin, R. S. (2020) Adjuvant and neoadjuvant chemotherapy for osteosarcoma: A historical perspective, Adv. Exp. Med. Biol., 1257, 1-10, https://doi.org/10.1007/978-3-030-43032-0_1.

    Article  CAS  PubMed  Google Scholar 

  2. Marina, N. M., Smeland, S., Bielack, S. S., Bernstein, M., Jovic, G., et al. (2016) Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international, randomised controlled trial, Lancet Oncol., 17, 1396-1408, https://doi.org/10.1016/S1470-2045(16)30214-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, H., Wu, X., and Cheng, X. (2016) Advances in diagnosis and treatment of metastatic cervical cancer, J. Gynecol. Oncol., 27, e43, https://doi.org/10.3802/jgo.2016.27.e43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, J., Pan, Q., and Ju, W. (2019) Ras inhibition by zoledronic acid effectively sensitizes cervical cancer to chemotherapy, Anticancer Drugs, 30, 821-827, https://doi.org/10.1097/CAD.0000000000000779.

    Article  CAS  PubMed  Google Scholar 

  5. Galembikova, A., and Boichuk, S. V. (2021) Tyrosine kinase signaling profile in osteosarcomas: A potential therapeutic target for sensitization to doxorubicin, Ann. Oncol., 32 (Suppl 6), S1365, https://doi.org/10.1016/j.annonc.2021.08.2060.

    Article  Google Scholar 

  6. Boichuk, S., Bikinieva, F., Nurgatina, I., Dunaev, P., Valeeva, E., et al. (2020) Inhibition of AKT-signaling sensitizes soft tissue sarcomas (STS) and gastrointestinal stromal tumors (GIST) to doxorubicin via targeting of homology-mediated DNA repair, Int. J. Mol. Sci., 21, 8842, https://doi.org/10.3390/ijms21228842.

    Article  CAS  PubMed Central  Google Scholar 

  7. Galembikova, A., and Boichuk, S. (2021) Targeting of AKT-signaling pathway potentiates the anti-cancer efficacy of doxorubicin in A673 Ewing sarcoma cell line, BioNanoSci., 11, 1070-1082, https://doi.org/10.1007/s12668-021-00901-x.

    Article  Google Scholar 

  8. Boichuk, S. V., Dunaev, P. D., and Galembikova, A. R. (2021) Inhibition of AKT signaling pathway in soft tissue sarcomas – a novel approach to sensitize them to the topoisomerase II inhibitors, Clin. Pathophisiol., 27, 75-87.

    Google Scholar 

  9. Zykova, S. S., Kizimova, I. A., Syutkina, A. I., Toksarova, Y. S., Igidov, N. M., et al. (2020) Synthesis and cytostatic activity of (E)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden)-4-oxo-1-(2-phenylaminobenzamido)-4,5-dihydro-1hpyrrol-3-carboxylate, Pharmaceut. Chem. J., 53, 895-898, https://doi.org/10.1007/s11094-020-02096-z.

    Article  CAS  Google Scholar 

  10. Boichuk, S., Galembikova, A., Bikinieva, F., Dunaev, P., Aukhadieva, A., et al. (2021) 2-APCAs, the novel microtubule targeting agents active against distinct cancer cell lines, Molecules, 26, 616, https://doi.org/10.3390/molecules26030616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomita, Y., Morooka, T., Hoshida, Y., Zhang, B., Qiu, Y., et al. (2006) Prognostic significance of activated AKT expression in soft-tissue sarcoma, Clin. Cancer Res., 12, 3070-3077, https://doi.org/10.1158/1078-0432.CCR-05-1732.

    Article  CAS  PubMed  Google Scholar 

  12. Verschoor, A. J., Speetjens, F. M., Dijkstra, P. D. S., Fiocco, M., van de Sande, M. A. J., et al. (2020) Single-center experience with ifosfamide monotherapy as second-line treatment of recurrent/metastatic osteosarcoma, Oncologist, 25, e716-e721, https://doi.org/10.1634/theoncologist.2019-0528.

    Article  CAS  PubMed  Google Scholar 

  13. Amoroso, L., Castel, V., Bisogno, G., Casanova, M., Marquez-Vega, C., et al. (2020) Phase II results from a phase I/II study to assess the safety and efficacy of weekly nab-paclitaxel in paediatric patients with recurrent or refractory solid tumours: A collaboration with the European Innovative Therapies for Children with Cancer Network, Eur. J. Cancer, 135, 89-97, https://doi.org/10.1016/j.ejca.2020.04.031.

    Article  CAS  PubMed  Google Scholar 

  14. Breithaupt, H., and Küenzlen, E. (1983) High-dose methotrexate for osteosarcoma: Toxicity and clinical results, Oncology, 40, 85-89.

    Article  CAS  Google Scholar 

  15. Wiseman, L. R., and Spencer, C. M. (1998) Paclitaxel. An update of its use in the treatment of metastatic breast cancer and ovarian and other gynaecological cancers, Drugs Aging, 12, 305-334, https://doi.org/10.2165/00002512-199812040-00005.

    Article  CAS  PubMed  Google Scholar 

  16. Goa, K. L., and Faulds, D. (1994) Vinorelbine. A review of its pharmacological properties and clinical use in cancer chemotherapy, Drugs Aging, 5, 200-234, https://doi.org/10.2165/00002512-199405030-00006.

    Article  CAS  PubMed  Google Scholar 

  17. Qin, S. Y., Cheng, Y. J., Lei, Q., Zhang, A. Q., and Zhang, X. Z. (2018) Combinational strategy for high-performance cancer chemotherapy, Biomaterials, 171, 178-197, https://doi.org/10.1016/j.biomaterials.2018.04.027.

    Article  CAS  PubMed  Google Scholar 

  18. Partridge, A. H., Burstein, H. J., and Winer, E. P. (2001) Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer, J. Natl. Cancer Inst. Monogr., 30, 135-142, https://doi.org/10.1093/oxfordjournals.jncimonographs.a003451.

    Article  Google Scholar 

  19. LeBaron, S., Zeltzer, L. K., LeBaron, C., Scott, S. E., Zeltzer, P. M., et al. (1988) Chemotherapy side effects in pediatric oncology patients: Drugs, age, and sex as risk factors, Med. Pediatr. Oncol., 16, 263-268, https://doi.org/10.1002/mpo.2950160408.

    Article  CAS  PubMed  Google Scholar 

  20. Albain, K. S., Nag, S. M., Calderillo-Ruiz, G., Jordaan, J. P., Llombart, A. C., et al. (2008) Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment, J. Clin. Oncol., 26, 3950-3957, https://doi.org/10.1200/JCO.2007.11.9362.

    Article  PubMed  Google Scholar 

  21. Mokhtari, R. B., Kumar, S., Islam, S. S., Yazdanpanah, M., Adeli, K., et al. (2013) Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines, BMC Cancer, 13, 378, https://doi.org/10.1186/1471-2407-13-378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Juergens, C., Weston, C., Lewis, I., Whelan, J., Paulussen, M., et al. (2006) Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial, Pediatr. Blood Cancer, 47, 22-29.

    Article  Google Scholar 

  23. Paulussen, M., Craft, A. W., Lewis, I., Hackshaw, A., Douglas, C., et al. (2008) European Intergroup Cooperative Ewing’s Sarcoma Study-92. Results of the EICESS-92 Study: Two randomized trials of Ewing’s sarcoma treatment-cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients, J. Clin. Oncol., 26, 4385-4393, https://doi.org/10.1200/JCO.2008.16.5720.

    Article  CAS  PubMed  Google Scholar 

  24. Le Chevalier, T., Pujol, J. L., Douillard, J. Y., Alberola, V., Monnier, A., et al. (1994) A three-arm trial of vinorelbine (Navelbine) plus cisplatin, vindesine plus cisplatin, and single-agent vinorelbine in the treatment of non-small cell lung cancer: an expanded analysis, Semin. Oncol., 21 (Suppl 10), 28-34.

    Google Scholar 

  25. Zykova, S. S., Boichuk, S. V., Galembikova, A. R., Ramazanov, B. R., Mustafin, I. G., et al. (2014) 3-Hydroxy-1,5-diaryl-4-pivaloyl-2,5-dihydro-2-pyrrolones induce the mitotic exit failure and cell death in tumor cells in vitro, Tsitologiya, 56, 439-442.

    CAS  Google Scholar 

  26. Zykova, S. S., Odegova, T. F., Boichuk, S. V., and Galembikova, A. R. (2015) Substituted 4-hydroxy-6-phenyl-3,4-dihydro-2H-1,3-oxazines, Pharmaceut. Chem. J., 48, 706-710, https://doi.org/10.1007/s11094-015-1177-0.

    Article  CAS  Google Scholar 

  27. Boichuk, S. V., Galembikova, A. R., Zykova, S. S., and Khusnutdinov, R. R. (2015) 2-amino-1H-pyrrole-3-carboxylate induces the cell cycle abnormalities and DNA damage response in tumor cells in vitro, Modern Problems Sci. Education, 5, 116.

    Google Scholar 

  28. Zykova, S. S., Galembikova, A. R., Ramazanov, B. R., Boichuk, S. V., Odegova, T. F., et al. (2016) Synthesis and cytotoxic activity of ethyl 2-amino-1-benzamido-4-oxo-5-(2-oxo-2-arylethylidene)-4,5-dihydro-1H-pyrrole-3-carboxylates, Pharmaceut. Chem. J., 49, 817-820, https://doi.org/10.1007/s11094-016-1378-1.

    Article  CAS  Google Scholar 

  29. Boichuk, S., Galembikova, A., Zykova, S., Ramazanov, B., Khusnutdinov, R., et al. (2016) Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro, AntiCancer Drugs, 27, 620-634, https://doi.org/10.1097/CAD.0000000000000372.30.

    Article  CAS  PubMed  Google Scholar 

  30. Zykova, S. S., Igidov, N. M., Kiselev, M. A., Boichuk, S. V., Galembikova, A. V., et al. (2016) Experimental study on the development of anticancer agents based on pyrrole containing heterocycles, J. Sci. Articles Health Educat. Millennium, 7, 121-127.

    Google Scholar 

  31. Galembikova, A. R., Boichuk, S. V., Zykova, S. S., Khusnutdinov, R. R., and Dunaev, P. D. (2017) Pivaloyl-substituted 2-pyrrolones induce death of gastrointestinal stromal tumors resistant to imatinib and chemotherapy drugs, Problems Oncol., 1, 135-140.

    Article  Google Scholar 

  32. Galembikova, A. R., Boichuk, S. V., Dunaev, P. D., Khusnutdinov, R. R., and Zykova, S. S. (2018) Effect of pivaloyl-substituted pyrrole containing heterocyclic compounds on DNA repair pathways in Ewing sarcoma cells, Kazan Med. J., 2, 245-248, https://doi.org/10.17816/KMJ2018-245.

    Article  Google Scholar 

  33. Zykova, S. S., Igidov, N. M., Zakhmatov, A. V., Kiselev, M. A., Galembikova, A. R., et al. (2018) Synthesis and biological activity of 2-amino-1-aryl-5-(3,3-dimethyl-2-oxobutylidene)-4-oxo-N-(thiazol-5-yl)-4,5-dihydro-1h-pyrrole-3-carboxamides, Pharmaceut. Chem. J., 52, 198-204, https://doi.org/10.1007/s11094-018-1790-9.

    Article  CAS  Google Scholar 

  34. Boichuk, S., Galembikova, A., Dunaev, P., Micheeva, E., Novikova, M., et al. (2019) Ethyl-amino-pyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro, AntiCancer Drugs, 30, 475-484, https://doi.org/10.1097/CAD.0000000000000753.

    Article  CAS  PubMed  Google Scholar 

  35. Boichuk, S., Galembikova, A., Syuzov, K., Dunaev, P., Bikinieva, F., et al. (2021) The design, synthesis, and biological activities of pyrrole-based carboxamides: The novel tubulin inhibitors targeting the colchicine-binding site, Molecules, 26, 5780, https://doi.org/10.3390/molecules26195780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poruchynsky, M. S., Komlodi-Pasztor, E., Trostel, S., Wilkerson, J., Regairaz, M., et al. (2015) Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins, Proc. Natl. Acad. Sci. USA, 112, 1571-1576, https://doi.org/10.1073/pnas.1416418112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Markowitz, D., Ha, G., Ruggieri, R., and Symons, M. (2017) Microtubule-targeting agents can sensitize cancer cells to ionizing radiation by an interphase-based mechanism, Onco Targets Ther., 10, 5633-5642, https://doi.org/10.2147/OTT.S143096.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 20-15-00001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Boichuk.

Ethics declarations

The authors declare no conflicts of interest. The article does not contain any data obtained in animals or human patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boichuk, S., Bikinieva, F., Mustafin, I. et al. 2-Amino-Pyrrole-Carboxylate Attenuates Homology-Mediated DNA Repair and Sensitizes Cancer Cells to Doxorubicin. Biochemistry Moscow 87, 391–399 (2022). https://doi.org/10.1134/S0006297922050017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922050017

Keywords

Navigation