Skip to main content
Log in

Potential Effect of Post-Transcriptional Substitutions of Tyrosine for Cysteine Residues on Transformation of Amyloidogenic Proteins

  • MINI-REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review considers the reasons and consequences of post-transcriptional tyrosine substitutions for cysteine residues. Main attention is paid to the Tyr/Cys substitutions that arise during gene expression in bacterial systems at the stage of protein translation as a result of misrecognition of the similar mRNA codons. Notably, translation errors generally occur relatively rarely – from 10–4 to 10–3 errors per codon for E. coli cells, but in some cases the error rate increases significantly. For example, this is typical for certain pairs of codons, when the culture conditions change or in the presence of antibiotics. Thus, with overproduction of the recombinant human alpha-synuclein in E. coli cells, the content of the mutant form with the replacement of Tyr136 (UAC codon) with a cysteine residue (UGC codon) can reach 50%. Possible reasons for the increased production of alpha-synuclein with the Tyr136Cys substitution are considered, as well as consequences of the presence of mutant forms in preparations of amyloidogenic proteins when studying their pathological transformation in vitro. A separate section is devoted to the Tyr/Cys substitutions occurring due to mRNA editing by adenosine deaminases, which is typical for eukaryotic organisms, and the possible role of this process in the amyloid transformation of proteins associated with neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Nishikura, K. (2010) Functions and regulation of RNA editing by ADAR deaminases, Annu. Rev. Biochem., 79, 321-349, https://doi.org/10.1146/annurev-biochem-060208-105251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, C. X., Cho, D. S., Wang, Q., Lai, F., Carter, K. C., et al. (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains, RNA, 6, 755-767, https://doi.org/10.1017/s1355838200000170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sinigaglia, K., Wiatrek, D., Khan, A., Michalik, D., Sambrani, N., et al. (2019) ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep, Biochim. Biophys. Acta, 1862, 356-369, https://doi.org/10.1016/j.bbagrm.2018.10.011.

    Article  CAS  Google Scholar 

  4. Roth, S. H., Danan-Gotthold, M., Ben-Izhak, M., Rechavi, G., Cohen, C. J., et al. (2018) Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus, Cell Rep., 23, 50-57, https://doi.org/10.1016/j.celrep.2018.03.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silvestris, D. A., Picardi, E., Cesarini, V., Fosso, B., Mangraviti, N., et al. (2019) Dynamic inosinome profiles reveal novel patient stratification and gender-specific differences in glioblastoma, Genome Biol., 20, 33, https://doi.org/10.1186/s13059-019-1647-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Costa Cruz, P. H., and Kawahara, Y. (2021) RNA Editing in Neurological and Neurodegenerative Disorders, in RNA Editing (Picardi, E., and Pesole, G., eds.) Springer US, New York, NY, pp. 309-330, https://doi.org/10.1007/978-1-0716-0787-9_18.

  7. Parker, J. (1989) Errors and alternatives in reading the universal genetic code, Microbiol. Rev., 53, 273-298, https://doi.org/10.1128/mr.53.3.273-298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loftfield, R. B., and Vanderjagt, D. (1972) The frequency of errors in protein biosynthesis, Biochem. J., 128, 1353-1356, https://doi.org/10.1042/bj1281353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khazaie, K., Buchanan, J. H., and Rosenberger, R. F. (1984) The accuracy of Qbeta RNA translation. 1. Errors during the synthesis of Qbeta proteins by intact Escherichia coli cells, Eur. J. Biochem., 144, 485-489, https://doi.org/10.1111/j.1432-1033.1984.tb08491.x.

    Article  CAS  PubMed  Google Scholar 

  10. Kramer, E. B., and Farabaugh, P. J. (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition, RNA, 13, 87-96, https://doi.org/10.1261/rna.294907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wohlgemuth, I., Garofalo, R., Samatova, E., Günenç, A. N., Lenz, C., et al. (2021) Translation error clusters induced by aminoglycoside antibiotics, Nat. Commun., 12, 1830, https://doi.org/10.1038/s41467-021-21942-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, J., Pavlov, M. Y., and Ehrenberg, M. (2018) Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions, Nucleic Acids Res., 46, 1362-1374, https://doi.org/10.1093/nar/gkx1256.

    Article  CAS  PubMed  Google Scholar 

  13. Garofalo, R., Wohlgemuth, I., Pearson, M., Lenz, C., Urlaub, H., et al. (2019) Broad range of missense error frequencies in cellular proteins, Nucleic Acids Res., 47, 2932-2945, https://doi.org/10.1093/nar/gky1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McNulty, D. E., Claffee, B. A., Huddleston, M. J., Porter, M. L., Cavnar, K. M., et al. (2003) Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli, Protein Express. Purif., 27, 365-374, https://doi.org/10.1016/s1046-5928(02)00610-1.

    Article  CAS  Google Scholar 

  15. Calderone, T. L., Stevens, R. D., and Oas, T. G. (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli, J. Mol. Biol., 262, 407-412, https://doi.org/10.1006/jmbi.1996.0524.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, Y., O’Mara, B., Conover, M., Ludwig, R., Fu, J., et al. (2012) Glycine to glutamic acid misincorporation observed in a recombinant protein expressed by Escherichia coli cells, Protein Sci., 21, 625-632, https://doi.org/10.1002/pro.2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y., Sharp, J. S., Do, D. H.-T., Kahn, R. A., Schwalbe, H., et al. (2017) Mistakes in translation: Reflections on mechanism, PLoS One, 12, e0180566, https://doi.org/10.1371/journal.pone.0180566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimmerman, S. M., Kon, Y., Hauke, A. C., Ruiz, B. Y., Fields, S., et al. (2018) Conditional accumulation of toxic tRNAs to cause amino acid misincorporation, Nucleic Acids Res., 46, 7831-7843, https://doi.org/10.1093/nar/gky623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kramer, E. B., Vallabhaneni, H., Mayer, L. M., and Farabaugh, P. J. (2010) A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae, RNA, 16, 1797-1808, https://doi.org/10.1261/rna.2201210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rice, J. B., Seyer, J. J., and Reeve, J. N. (1986) Identification of sites of cysteine misincorporation during in vivo synthesis of bacteriophage T7 0.3 protein, Biochim. Biophys. Acta, 867, 57-66, https://doi.org/10.1016/0167-4781(86)90029-1.

    Article  CAS  PubMed  Google Scholar 

  21. Masuda, M., Dohmae, N., Nonaka, T., Oikawa, T., Hisanaga, S., et al. (2006) Cysteine misincorporation in bacterially expressed human α-synuclein, FEBS Lett., 580, 1775-1779, https://doi.org/10.1016/j.febslet.2006.02.032.

    Article  CAS  PubMed  Google Scholar 

  22. Barinova, K. V., Kuravsky, M. L., Arutyunyan, A. M., Serebryakova, M. V., Schmalhausen, E. V., et al. (2017) Dimerization of Tyr136Cys alpha-synuclein prevents amyloid transformation of wild type alpha-synuclein, Int. J. Biological Macromol., 96, 35-43, https://doi.org/10.1016/j.ijbiomac.2016.12.011.

    Article  CAS  Google Scholar 

  23. Kim, U., Wang, Y., Sanford, T., Zeng, Y., and Nishikura, K. (1994) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing, Proc. Natl. Acad. Sci. USA, 91, 11457-11461, https://doi.org/10.1073/pnas.91.24.11457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, U., and Nishikura, K. (1993) Double-stranded RNA adenosine deaminase as a potential mammalian RNA editing factor, Semin. Cell Biol., 4, 285-293, https://doi.org/10.1006/scel.1993.1034.

    Article  CAS  PubMed  Google Scholar 

  25. Maas, S., Melcher, T., and Seeburg, P. H. (1997) Mammalian RNA-dependent deaminases and edited mRNAs, Curr. Opin. Cell Biol., 9, 343-349, https://doi.org/10.1016/S0955-0674(97)80006-3.

    Article  CAS  PubMed  Google Scholar 

  26. Yuting, K., Ding, D., and Iizasa, H. (2021) Adenosine-to-Inosine RNA Editing Enzyme ADAR and microRNAs, Methods Mol. Biol., 2181, 83-95, https://doi.org/10.1007/978-1-0716-0787-9_6.

    Article  CAS  PubMed  Google Scholar 

  27. Mallela, A., and Nishikura, K. (2012) A-to-I editing of protein coding and noncoding RNAs, Crit. Rev. Biochem. Mol. Biol., 47, 493-501, https://doi.org/10.3109/10409238.2012.714350.

    Article  CAS  PubMed  Google Scholar 

  28. Kliuchnikova, A. A., Kuznetsova, K. G., and Moshkovskii, S. A. (2016) ADAR-mediated messenger RNA editing: Analysis at the proteome level, Biochemistry (Moscow), Suppl. Series B Biomed. Chem., 11, 32-42, https://doi.org/10.18097/PBMC20166205510.

    Article  CAS  Google Scholar 

  29. Maas, S., Kawahara, Y., Tamburro, K. M., and Nishikura, K. (2006) A-to-I RNA editing and human disease, RNA Biol., 3, 1-9, https://doi.org/10.4161/rna.3.1.2495.

    Article  CAS  PubMed  Google Scholar 

  30. Gaisler-Salomon, I., Kravitz, E., Feiler, Y., Safran, M., Biegon, A., et al. (2014) Hippocampus-specific deficiency in RNA editing of GluA2 in Alzheimer’s disease, Neurobiol. Aging, 35, 1785-1791, https://doi.org/10.1016/j.neurobiolaging.2014.02.018.

    Article  CAS  PubMed  Google Scholar 

  31. Akbarian, S., Smith, M. A., and Jones, E. G. (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia, Brain Res., 699, 297-304, https://doi.org/10.1016/0006-8993(95)00922-D.

    Article  CAS  PubMed  Google Scholar 

  32. Hosaka, T., Tsuji, H., and Kwak, S. (2021) RNA editing: A new therapeutic target in amyotrophic lateral sclerosis and other neurological diseases, Int. J. Mol. Sci., 22, 10958, https://doi.org/10.3390/ijms222010958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khermesh, K., D’Erchia, A. M., Barak, M., Annese, A., Wachtel, C., et al. (2016) Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer’s disease, RNA, 22, 290-302, https://doi.org/10.1261/rna.054627.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo Giudice, C., Tangaro, M. A., Pesole, G., and Picardi, E. (2020) Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal, Nat. Protocols, 15, 1098-1131, https://doi.org/10.1038/s41596-019-0279-7.

    Article  CAS  PubMed  Google Scholar 

  35. Mansi, L., Tangaro, M. A., Lo Giudice, C., Flati, T., Kopel, E., et al. (2021) REDIportal: Millions of novel A-to-I RNA editing events from thousands of RNAseq experiments, Nucleic Acids Res., 49, D1012-D1019, https://doi.org/10.1093/nar/gkaa916.

    Article  CAS  PubMed  Google Scholar 

  36. Hatos, A., Hajdu-Soltész, B., Monzon, A. M., Palopoli, N., Álvarez, L., et al. (2019) DisProt: Intrinsic protein disorder annotation in 2020, Nucleic Acids Res., 48, D269-D276, https://doi.org/10.1093/nar/gkz975.

    Article  CAS  PubMed Central  Google Scholar 

  37. Ramaswami, G., and Li, J. B. (2014) RADAR: A rigorously annotated database of A-to-I RNA editing, Nucleic Acids Res., 42, D109-D113, https://doi.org/10.1093/nar/gkt996.

    Article  CAS  PubMed  Google Scholar 

  38. Picardi, E., D’Erchia, A. M., Lo Giudice, C., and Pesole, G. (2017) REDIportal: A comprehensive database of A-to-I RNA editing events in humans, Nucleic Acids Res., 45, D750-D757, https://doi.org/10.1093/nar/gkw767.

    Article  CAS  PubMed  Google Scholar 

  39. Pozdyshev, D. V., Melnikova, A. K., Barinova, K. V., Schmalhausen, E. V., and Muronetz, V. I. (2020) Differences in the synthesis of recombinant α-synuclein in pro-and eukaryotic organisms: Possibility of Tyr136Cys substitution, Curr. Top. Peptide Prot. Res., 21, 75-81.

    CAS  Google Scholar 

  40. Feughelman, M., and Willis, B. K. (2000) Thiol-disulfide interchange a potential key to conformational change associated with amyloid fibril formation, J. Theor. Biol., 206, 313-315, https://doi.org/10.1006/jtbi.2000.2112.

    Article  CAS  PubMed  Google Scholar 

  41. Li, Y., Yan, J., Zhang, X., and Huang, K. (2013) Disulfide bonds in amyloidogenesis diseases related proteins, Proteins, 81, 1862-1873, https://doi.org/10.1002/prot.24338.

    Article  CAS  PubMed  Google Scholar 

  42. Maiti, N. R., and Surewicz, W. K. (2001) The role of disulfide bridge in the folding and stability of the recombinant human prion protein, J. Biol. Chem., 276, 2427-2431, https://doi.org/10.1074/jbc.M007862200.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, S., and Eisenberg, D. (2003) Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process, Nat. Struct. Biol., 10, 725-730, https://doi.org/10.1038/nsb961.

    Article  CAS  PubMed  Google Scholar 

  44. Hosszu, L. L. P., Trevitt, C. R., Jones, S., Batchelor, M., Scott, D. J., et al. (2009) Conformational properties of beta-PrP, J. Biol. Chem., 284, 21981-21990, https://doi.org/10.1074/jbc.M809173200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Welker, E., Wedemeyer, W. J., and Scheraga, H. A. (2001) A role for intermolecular disulfide bonds in prion diseases? Proc. Natl. Acad. Sci. USA, 98, 4334-4336, https://doi.org/10.1073/pnas.071066598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehlhorn, I., Groth, D., Stöckel, J., Moffat, B., Reilly, D., et al. (1996) High-level expression and characterization of a purified 142-residue polypeptide of the prion protein, Biochemistry, 35, 5528-5537, https://doi.org/10.1021/bi952965e.

    Article  CAS  PubMed  Google Scholar 

  47. Suk, J.-E., Lokappa, S. B., and Ulmer, T. S. (2010) The clustering and spatial arrangement of beta-sheet sequence, but not order, govern alpha-synuclein fibrillogenesis, Biochemistry, 49, 1533-1540, https://doi.org/10.1021/bi901753h.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, W., and Freed, C. R. (2004) Tyrosine-to-cysteine modification of human alpha-synuclein enhances protein aggregation and cellular toxicity, J. Biol. Chem., 279, 10128-10135, https://doi.org/10.1074/jbc.M307563200.

    Article  CAS  PubMed  Google Scholar 

  49. Krishnan, R., and Lindquist, S. L. (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity, Nature, 435, 765-772, https://doi.org/10.1038/nature03679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong, D.-P., Xiong, W., Chang, J.-Y., and Jiang, C. (2011) The role of the C-terminus of human α-synuclein: Intra-disulfide bonds between the C-terminus and other regions stabilize non-fibrillar monomeric isomers, FEBS Lett., 585, 561-566, https://doi.org/10.1016/j.febslet.2011.01.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-04-00421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Muronetz.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muronetz, V.I., Pozdyshev, D.V., Medvedeva, M.V. et al. Potential Effect of Post-Transcriptional Substitutions of Tyrosine for Cysteine Residues on Transformation of Amyloidogenic Proteins. Biochemistry Moscow 87, 170–178 (2022). https://doi.org/10.1134/S0006297922020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922020080

Keywords

Navigation