Skip to main content
Log in

Parameters of Tumor Microenvironment Determine Effectiveness of Anti-PD-1/PD-L1 Therapy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Undoubtedly, one of the most promising approaches to the treatment of cancer is creation of the pathogenetically based therapeutic drugs. Researchers from all over the world are trying to answer the question on how to select a target that would be effective and, in general, they are quite successful at that. The Nobel Prize-winning discovery of mechanisms for regulating activity of the immune system cells through checkpoint molecules, as well as discovery of the ability of tumor cells to use these mechanisms to suppress immune responses was an impetus for the development of modern immunotherapy, and now such inhibitors of the immune checkpoints as PD-1/PD-L1 are included in the routine chemotherapy. Use of such drugs can prolong the patient’s life, but, unfortunately, not cure the disease. This is partially due to heterogeneity of tumor cells and microenvironment, but the main reasons may be in the complex relationships between the tumor and microenvironment, which, at times, are so plastic that they can change, adjusting to newly emerging conditions. Main characteristic of the tumor microenvironment is the type of the ongoing immune-inflammatory response (IIR), and since inhibitors of the immune checkpoints act on the cells involved in IIR, it is obvious that the outcomes of cancer therapy, including outcomes of hyperprogressive disease, can be associated with this parameter. The presented review reveals the essence of interactions between the tumor and its microenvironment during therapy with PD-L1 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

breast carcinoma

CTLA-4:

cytotoxic T-lymphocyte-associated protein 4

HPD:

hyperprogressive disease

IIR:

immune-inflammatory response

IL:

interleukin

NF-κB:

nuclear factor kappa-B

NK cells:

natural killer cells

NSCLC:

non-small cell lung cancer

PD-1:

programmed cell death protein 1

PD-L1:

programmed cell death ligand 1

TILs:

tumor-infiltrating lymphocytes

TNF-α:

tumor necrosis factor-α

References

  1. Zak, K. M., Grudnik, P., Magiera, K., Dömling, A., Dubin, G., and Holak, T. A. (2017) Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2, Structure, 25, 1163-1174, https://doi.org/10.1016/j.str.2017.06.011.

    Article  CAS  PubMed  Google Scholar 

  2. Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H., and Freeman, G. J. (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses, Immunity, 27, 111-122, https://doi.org/10.1016/j.immuni.2007.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., et al. (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat. Med., 8, 793-800, https://doi.org/10.1038/nm730.

    Article  CAS  PubMed  Google Scholar 

  4. Gatalica, Z., Snyder, C., Maney, T., Ghazalpour, A., Holterman, D. A., et al. (2014) Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type, Cancer Epidemiol. Biomarkers Prevention, 23, 2965-2970, https://doi.org/10.1158/1055-9965.EPI-14-0654.

    Article  CAS  Google Scholar 

  5. Bardhan, K., Anagnostou, T., and Boussiotis, V. A. (2016) The PD1:PD-L1/2 pathway from discovery to clinical implementation, Front. Immunol., 7, 500, https://doi.org/10.3389/fimmu.2016.00550.

    Article  CAS  Google Scholar 

  6. Yearley, J. H., Gibson, C., Yu, N., Moon, C., Murphy, E., et al. (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer, Clin. Cancer Res., 23, 3158-3167, https://doi.org/10.1158/1078-0432.CCR-16-1761.

    Article  CAS  PubMed  Google Scholar 

  7. Singh, A.K., Stock, P., Akbari, O. (2011) Role of PD-L1 and PD-L2 in allergic diseases and asthma, Allergy, 66, 155-162.

    Article  CAS  Google Scholar 

  8. Ghosh, C., Luong, G., and Sun, Y. (2021) A snapshot of the PD-1/PD-L1 pathway, J. Cancer, 12, 2735-2746, https://doi.org/10.7150/jca.57334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buchbinder, E. I., and Desai, A. (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition, Am. J. Clin. Oncol., 39, 98-106, https://doi.org/10.1097/COC.0000000000000239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghiotto, M., Gauthier, L., Serriari, N., Pastor, S., Truneh, A., et al. (2010) PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1, Int. Immunol., 22, 651-660, https://doi.org/10.1093/intimm/dxq049.

    Article  CAS  PubMed  Google Scholar 

  11. Arrieta, O., Montes-Servín, E., Hernandez-Martinez, J.-M., Cardona, A. F., Casas-Ruiz, E., et al. (2017) Expression of PD-1/PD-L1 and PD-L2 in peripheral T-cells from non-small cell lung cancer patients, Oncotarget, 8, 101994-102005, https://doi.org/10.18632/oncotarget.22025.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu, S., Lin, J., Qiao, G., Wang, X., and Xu, Y. (2016) Tim-3 identifies exhausted follicular helper T cells in breast cancer patients, Immunobiology, 221, 986-993, https://doi.org/10.1016/j.imbio.2016.04.005.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma, P., Siddiqui, B. A., Anandhan, S., Yadav, S. S., Subudhi, S. K., et al. (2021) The next decade of immune checkpoint therapy, Cancer Discov., 11, 838-857, https://doi.org/10.1158/2159-8290.CD-20-1680.

    Article  CAS  PubMed  Google Scholar 

  14. Patel, S. P., and Kurzrock, R. (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy, Mol. Cancer Ther., 14, 847-856, https://doi.org/10.1158/1535-7163.MCT-14-0983.

    Article  CAS  PubMed  Google Scholar 

  15. Powles, T., Eder, J. P., Fine, G. D., Braiteh, F. S., Loriot, Y., et al. (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer, Nature, 515, 558-562, https://doi.org/10.1038/nature13904.

    Article  CAS  PubMed  Google Scholar 

  16. Ai, L., Chen, J., Yan, H., He, Q., Luo, P., et al. (2020) Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy, Drug Des. Dev. Ther., 14, 3625-3649, https://doi.org/10.2147/DDDT.S267433.

    Article  CAS  Google Scholar 

  17. Teng, F., Meng, X., Kong, L., and Yu, J. (2018) Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: a systematic review, Cancer Lett., 414, 166-173, https://doi.org/10.1016/j.canlet.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  18. Teng, M. W., Ngiow, S. F., Ribas, A., and Smyth, M. J. (2015) Classifying cancers based on T-cell infiltration and PD-L1, Cancer Res., 75, 2139-2145, https://doi.org/10.1158/0008-5472.CAN-15-0255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Emens, L. A., Cruz, C., Eder, J. P., Braiteh, F., Chung, C., et al. (2019) Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study, JAMA Oncol., 5, 74-82, https://doi.org/10.1001/jamaoncol.2018.4224.

    Article  PubMed  Google Scholar 

  20. Tashireva, L. A., Perelmuter, V. M., Denisov, E. V., Savelieva, O. E., et al. (2017) Types of immune-inflammatory responses as a reflection of cell–cell interactions under conditions of tissue regeneration and tumor growth, Biochemistry (Moscow), 82, 542-555, https://doi.org/10.1134/S0006297917050029.

    Article  CAS  Google Scholar 

  21. Perelmuter, V. M., Tashireva, L. A., Manskikh, V. N., Denisov, E. V., Savelieva, O. E., et al. (2017) Heterogeneity and plasticity of immune-inflammatory responses in tumor microenvironment: A role in antitumor effect and tumor aggressiveness, Zhurn. Obsch. Biol., 78, 15-36.

    Google Scholar 

  22. Emens, L., Loi, S., Rugo, H., Schneeweiss, A., Diéras, V., et al. (2019) Abstract GS1-04: IMpassion130: Efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer, Cancer Res., 79, GS1-04, https://doi.org/10.1158/1538-7445.SABCS18-GS1-04.

    Article  Google Scholar 

  23. Catacchio, I., Silvestris, N., Scarpi, E., Schirosi, L., Scattone, A., and Mangia, A. (2019) Intratumoral, rather than stromal, CD8+ T cells could be a potential negative prognostic marker in invasive breast cancer patients, Transl. Oncol., 12, 585-595, https://doi.org/10.1016/j.tranon.2018.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Somasundaram, R., Connelly, T., Choi, R., Choi, H., Samarkina, A., et al. (2021) Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy, Nat. Commun., 12, 1-14, https://doi.org/10.1038/s41467-020-20600-7.

    Article  CAS  Google Scholar 

  25. Abiko, K., Matsumura, N., Hamanishi, J., Horikawa, N., Murakami, R., et al. (2015) IFN-α from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer, Br. J. Cancer, 112, 1501-1509.

    Article  CAS  Google Scholar 

  26. Sun, C., Mezzadra, R., and Schumacher, T. N. (2018) Regulation and function of the PD-L1 checkpoint, Immunity, 48, 434-452, https://doi.org/10.1016/j.immuni.2018.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, Y. (2018) Regulatory mechanisms of PD-L1 expression in cancer cells, Cancer Immunol. Immunother., 67, 1481-1489, https://doi.org/10.1007/s00262-018-2226-9.

    Article  CAS  PubMed  Google Scholar 

  28. Yamazaki, T., Akiba, H., Iwai, H., Matsuda, H., Aoki, M., et al. (2002) Expression of programmed death 1 ligands by murine T cells and APC, J. Immunol., 169, 5538-5545, https://doi.org/10.4049/jimmunol.169.10.5538.

    Article  CAS  PubMed  Google Scholar 

  29. Loke, P., and Allison, J. P. (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells, Proc. Natl. Acad. Sci. USA, 100, 5336-5341.

    Article  CAS  Google Scholar 

  30. Wang, X., Teng, F., Kong, L., and Yu, J. (2016) PD-L1 expression in human cancers and its association with clinical outcomes, Onco Targets Ther., 9, 5023-5039, https://doi.org/10.2147/OTT.S105862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Budczies, J., Bockmayr, M., Denkert, C., Klauschen, F., Gröschel, S., et al. (2016) Pan-cancer analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274)-associations with gene expression, mutational load, and survival, Genes Chromosomes Cancer, 55, 626-639, https://doi.org/10.1002/gcc.22365.

    Article  CAS  PubMed  Google Scholar 

  32. Mittendorf, E. A., Philips, A. V., Meric-Bernstam, F., Qiao, N., Wu, Y., et al. (2014) PD-L1 expression in triple-negative breast cancer, Cancer Immunol. Res., 2, 361-370, https://doi.org/10.1158/2326-6066.CIR-13-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., et al. (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation, J. Exp. Med., 211, 781-790, https://doi.org/10.1084/jem.20131916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shehade, H., Oldenhove, G., and Moser, M. (2014) Hypoxia in the intestine or solid tumors: a beneficial or deleterious alarm signal, Eur. J. Immunol., 44, 2550-2557, https://doi.org/10.1002/eji.201444719.

    Article  CAS  PubMed  Google Scholar 

  35. Dong, H., Zhu, G., Tamada, K., and Chen, L. (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion, Nat. Med., 5, 1365-1369, https://doi.org/10.1038/70932.

    Article  CAS  PubMed  Google Scholar 

  36. Carter, L., Fouser, L. A., Jussif, J., Fitz, L., Deng, B., et al. (2002) PD‐1:PD‐L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2, Eur. J. Immunol., 32, 634-643, https://doi.org/10.1002/1521-4141(200203)32:3<634::AID-IMMU634>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  37. Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., et al. (2000) Engagement of the PD‐1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 192, 1027-1034, https://doi.org/10.1084/jem.192.7.1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karyampudi, L., Lamichhane, P., Krempski, J., Kalli, K. R., Behrens, M. D., et al. (2016) PD‐1 blunts the function of ovarian tumor‐infiltrating dendritic cells by inactivating NF-κB, Cancer Res., 76, 239-250, https://doi.org/10.1158/0008-5472.CAN-15-0748.

    Article  CAS  PubMed  Google Scholar 

  39. Gettinger, S. N., Choi, J., Mani, N., Sanmamed, M. F., Datar, I., et al. (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers, Nat. Commun., 9, 1-15, https://doi.org/10.1038/s41467-018-05032-8.

    Article  CAS  Google Scholar 

  40. Solaymani-Mohammadi, S., Lakhdari, O., Minev, I., Shenouda, S., Frey, B. F., et al. (2016) Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules, J. Leukoc. Biol., 99, 2-9, https://doi.org/10.1189/jlb.4A0115-003RR.

    Article  CAS  Google Scholar 

  41. Niu, C., Li, M., Zhu, S., Chen, Y., Zhou, L., et al. (2020) PD-1-positive Natural Killer Cells have a weaker antitumor function than that of PD-1-negative Natural Killer Cells in lung cancer, Int. Med. Sci., 17, 1964-1973, https://doi.org/10.7150/ijms.47701.

    Article  CAS  Google Scholar 

  42. Lamichhane, P., Karyampudi, L., Shreeder, B., Krempski, J., Bahr, D., et al. (2017) IL10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer, Cancer Res., 77, 6667-6678, https://doi.org/10.1158/0008-5472.CAN-17-0740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamaguchi, K., Mishima, K., Ohmura, H., Hanamura, F., Ito, M., et al. (2018) Activation of central/effector memory T cells and Th1 polarization in malignant melanoma patients treated with anti-PD-1 antibody, Cancer Sci., 109, 3032-3042, https://doi.org/10.1111/cas.13758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dulos, J., Carven, G. J., van Boxtel, S. J., Evers, S., Driessen-Engels, L. J., et al. (2012) PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer, J. Immunother., 35, 169-178, https://doi.org/10.1097/CJI.0b013e318247a4e7.

    Article  CAS  PubMed  Google Scholar 

  45. Tavukcuoglu, E., Horzum, U., Yilmaz, K. B., and Esendagli, G. (2020) PD-L2+ wound zone macrophage-like cells display M1/M2-mixed activation and restrain the effector Th1 responses, Immunol. Cell Biol., 98, 152-164, https://doi.org/10.1111/imcb.12310.

    Article  CAS  PubMed  Google Scholar 

  46. Verma, V., Shrimali, R. K., Ahmad, S., Dai, W., Wang, H., et al. (2019) PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance, Nat. Immunol., 20, 1231-1243, https://doi.org/10.1038/s41590-019-0441-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chubachi, S., Yasuda, H., Irie, H., Fukunaga, K., Naoki, K., et al. (2016) A case of non‐small cell lung cancer with possible “disease flare” on nivolumab treatment, Case Rep., 2016, 1-3, https://doi.org/10.1155/2016/1075641.

    Article  Google Scholar 

  48. Champiat, S., Dercle, L., Ammari, S., Massard, C., Hollebecque, A., et al. (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1, Clin. Cancer Res., 23, 1920‐1928, https://doi.org/10.1158/1078-0432.CCR-16-1741.

    Article  CAS  PubMed  Google Scholar 

  49. Lahmar, J., Mezquita, L., Koscielny, S., Facchinetti, F., Bluthgen, M. V., et al. (2016) Immune checkpoint inhibitors (IC) induce paradoxical progression in a subset of non-small cell lung cancer (NSCLC), Ann. Oncol., 27, vi423, https://doi.org/10.1093/annonc/mdw383.22.

    Article  Google Scholar 

  50. Ferrara, R., Mezquita, L., Texier, M., Lahmar, J., Audigier-Valette, C., et al. (2018) Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy, JAMA Oncol., 4, 1543-1552, https://doi.org/10.1001/jamaoncol.2018.3676.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kato, S., Goodman, A., Walavalkar, V., Barkauskas, D. A., Sharabi, A., and Kurzrock, R. (2017) Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate, Clin. Cancer Res., 15, 4242-4250, https://doi.org/10.1158/1078-0432.CCR-16-3133.

    Article  CAS  Google Scholar 

  52. Saâda-Bouzid, E., Defaucheux, C., Karabajakian, A., Coloma, V. P., Servois, V., et al. (2017) Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma, Ann. Oncol., 28, 1605-1611, https://doi.org/10.1093/annonc/mdx178.

    Article  PubMed  Google Scholar 

  53. Kim, C. G., Kim, K. H., Pyo, K. H., Xin, C. F., Hong, M. H., et al. (2019) Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer, Ann. Oncol., 30, 1104-1113, https://doi.org/10.1093/annonc/mdz123.

    Article  CAS  PubMed  Google Scholar 

  54. Lo Russo, G., Moro, M., Sommariva, M., Cancila, V., Boeri, M., et al. (2019) Antibody-fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade, Clin. Cancer Res., 25, 989-999, https://doi.org/10.1158/1078-0432.CCR-18-1390.

    Article  CAS  PubMed  Google Scholar 

  55. Kamada, T., Togashi, Y., Tay, C., Ha, D., Sasaki, A., et al. (2019) PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer, Proc. Natl. Acad. Sci. USA, 116, 9999-10008, https://doi.org/10.1073/pnas.1822001116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arasanz, H., Zuazo, M., Bocanegra, A., Gato, M., Martínez-Aguillo, M., et al. (2020) Early detection of hyperprogressive disease in non‐small cell lung cancer by monitoring of systemic T cell dynamics, Cancers (Basel), 12, 334, https://doi.org/10.3390/cancers12020344.

    Article  CAS  Google Scholar 

  57. Kim, S. R., Chun, S. H., Kim, J. R., Kim, S.-Y., Seo, J. Y., et al. (2021) The implications of clinical risk factors, CAR index, and compositional changes of immune cells on hyperprogressive disease in non-small cell lung cancer patients receiving immunotherapy, BMC Cancer, 21, 1-11, https://doi.org/10.1186/s12885-020-07727-y.

    Article  CAS  Google Scholar 

  58. Sun, Z., Fourcade, J., Pagliano, O., Chauvin, J.-M., Sander, C., et al. (2015) IL10 and PD‐1 cooperate to limit the activity of tumor‐specific CD8+ T cells, Cancer Res., 75, 1635-1644, https://doi.org/10.1158/0008-5472.CAN-14-3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Groux, H., Bigler, M., de Vries, J. E., and Roncarolo, M. G. (1996) Interleukin-10 induces a long‐term antigen‐specific anergic state in human CD4+ T cells, J. Exp. Med., 184, 19‐29, https://doi.org/10.1084/jem.184.1.19.

    Article  PubMed  Google Scholar 

  60. O’Garra, A., Barrat, F. J., Castro, A. G., Vicari, A., and Hawrylowicz, C. (2008) Strategies for use of IL-10 or its antagonists in human disease, Immunol. Rev., 223, 114-131, https://doi.org/10.1111/j.1600-065X.2008.00635.x.

    Article  PubMed  Google Scholar 

  61. Gato-Cañas, M., Zuazo, M., Arasanz, H., Ibañez-Vea, M., Lorenzo, L., et al. (2017) PD-L1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity, Cell Rep., 20, 1818-1829, https://doi.org/10.1016/j.celrep.2017.07.075.

    Article  CAS  PubMed  Google Scholar 

  62. Xiong, D., Wang, Y., Singavi, A. K., Mackinnon, A. C., George, B., and You, M. (2018) Immunogenomic landscape contributes to hyperprogressive disease after anti-PD-1 immunotherapy for cancer, iScience, 9, 258-277, https://doi.org/10.1016/j.isci.2018.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stathopoulou, C., Gangaplara, A., Mallett, G., Flomerfelt, F. A., Liniany, L. P., et al. (2018) PD-1 Inhibitory receptor downregulates asparaginyl endopeptidase and maintains Foxp3 transcription factor stability in induced regulatory T cells, Immunity, 49, 247-263, https://doi.org/10.1016/j.immuni.2018.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsukamoto, H., Fujieda, K., Miyashita, A., Fukushima, S., Ikeda, T., et al. (2018) Combined blockade of IL-6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment, Cancer Res., 78, 5011-5022, https://doi.org/10.1158/0008-5472.CAN-18-0118.

    Article  CAS  PubMed  Google Scholar 

  65. Schwartz, C., Khan, A. R., Floudas, A., Saunders, S. P., Hams, E., et al. (2017) ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control, J. Exp. Med., 214, 2507-2521, https://doi.org/10.1084/jem.20170051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 20-75-10033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liubov A. Tashireva.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashireva, L.A., Muravyova, D.T., Popova, N.O. et al. Parameters of Tumor Microenvironment Determine Effectiveness of Anti-PD-1/PD-L1 Therapy. Biochemistry Moscow 86, 1461–1468 (2021). https://doi.org/10.1134/S0006297921110092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921110092

Keywords

Navigation