Skip to main content
Log in

AMPK/PGC-1α/GLUT4-Mediated Effect of Icariin on Hyperlipidemia-Induced Non-Alcoholic Fatty Liver Disease and Lipid Metabolism Disorder in Mice

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Therapeutic activity of icariin, a major bioactive component of Epimedii Herba, in NAFLD is still unknown. Herein, the C57BL/6J mice were fed with a high-fat diet for 16 weeks to establish a NAFLD model. Mice were assigned to five groups: control group, NAFLD group, and icariin treatment groups. Effects of icariin on blood indices, glucose tolerance, insulin sensitivity, histopathological morphology, cell apoptosis, lipid accumulation, and AMPK signaling were analyzed. In addition, another cohort of mice were assigned to five groups: control group, NAFLD group, dorsomorphin treatment group, icariin treatment group, and dorsomorphin + icariin treatment group. Expression of proteins in liver tissues associated with AMPK signaling, and levels of ALT and AST were evaluated. Icariin attenuated the NAFLD-induced increase of the TG, TC, LDL-C, ALT, AST levels. HDL-C levels were affected neither by NAFLD nor by icariin. Furthermore, icariin treatment (100-200 mg/kg) counteracted the NAFLD-reduced glucose tolerance and insulin sensitivity and modulated histopathological changes, cell apoptosis, and lipid accumulation in liver tissues. Additionally, icariin mitigated the NAFLD-induced up-regulation of the cleaved caspase 3/9, SREBP-1c, and DGAT-2 levels, and enhanced the expression level of CPT-1, p-ACC/ACC, AMPKα1, PGC-1α, and GLUT4. Effects of icariin on the AMPK signaling and levels of AST and ALT could be reversed by AMPK inhibitor, dorsomorphin. This paper investigates the glucose-reducing and lipid-lowering effects of icariin in NAFLD. Moreover, icariin might function through activating the AMPKα1/PGC-1α/GLTU4 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

AMPK:

AMP-activated protein kinase

AST:

aspartate aminotransferase

LDL-C:

low-density lipoprotein-cholesterol

NAFLD:

non-alcoholic fatty liver disease

PGC-1α:

peroxisome proliferator-activated receptor gamma coactivator 1 alpha

SREBP-1c:

sterol-regulatory element binding protein 1c

TC:

total cholesterol

TG:

triglyceride

References

  1. Sanyal, A. J., Brunt, E. M., Kleiner, D. E., Kowdley, K. V., Chalasani, N., et al. (2011) Endpoints and clinical trial design for nonalcoholic steatohepatitis, Hepatology, 54, 344-353, https://doi.org/10.1002/hep.24376.

    Article  PubMed  Google Scholar 

  2. Younossi, Z., Anstee, Q. M., Marietti, M., Hardy, T., Henry, L., et al. (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention, Nat. Rev. Gastroenterol. Hepatol., 15, 11-20, https://doi.org/10.1038/nrgastro.2017.109.

    Article  PubMed  Google Scholar 

  3. Milić, S., Lulić, D., and Štimac, D. (2014) Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations, World J. Gastroenterol., 20, 9330-9337, https://doi.org/10.3748/wjg.v20.i28.9330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rinella, M. E., and Sanyal, A. J. (2016) Management of NAFLD: a stage-based approach, Nat. Rev. Gastroenterol. Hepatol., 13, 196-205, https://doi.org/10.1038/nrgastro.2016.3.

    Article  CAS  PubMed  Google Scholar 

  5. Zein, C. O., Yerian, L. M., Gogate, P., Lopez, R., Kirwan, J. P., et al. (2011) Pentoxifylline improves nonalcoholic steatohepatitis: a randomized placebo-controlled trial, Hepatology (Baltimore, Md.), 54, 1610-1619, https://doi.org/10.1002/hep.24544.

    Article  CAS  Google Scholar 

  6. Cusi, K. (2016) Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions, Diabetologia, 59, 1112-1120, https://doi.org/10.1007/s00125-016-3952-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, J. J., Li, S. P., and Wang, Y. T. (2006) Optimization for quantitative determination of four flavonoids in Epimedium by capillary zone electrophoresis coupled with diode array detection using central composite design, J. Chromatogr. A, 27, 344-349.

    Article  Google Scholar 

  8. Wang, Y., Wang, Y.-S., Song, S.-L., Liang, H., and Ji, A.-G. (2016) Icariin inhibits atherosclerosis progress in Apoe null mice by downregulating CX3CR1 in macrophage, Biochem. Biophys. Res. Commun., 470, 845-850, https://doi.org/10.1016/j.bbrc.2016.01.118.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, Y., Sun, B., Liu, K., Yan, M., Zhang, Y., et al. (2016) Icariin attenuates high-cholesterol diet induced atherosclerosis in rats by inhibition of inflammatory response and p38 MAPK signaling pathway, Inflammation, 39, 228-236, https://doi.org/10.1007/s10753-015-0242-x.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, W.-P., Bai, X.-J., Zheng, X.-P., Xie, X.-L., and Yuan, Z.-Y. (2013) Icariin attenuates the enhanced prothrombotic state in atherosclerotic rabbits independently of its lipid-lowering effects, Planta Med., 79, 731-736, https://doi.org/10.1055/s-0032-1328551.

    Article  CAS  PubMed  Google Scholar 

  11. Tian, M., Yang, S., and Yan, X. (2018) Icariin reduces human colon carcinoma cell growth and metastasis by enhancing p53 activities, Braz. J. Med. Biol. Res., 51, e7151-e7151, https://doi.org/10.1590/1414-431X20187151.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qi, S., He, J., Zheng, H., Chen, C., and Lan, S. (2019) Icariin prevents diabetes-induced bone loss in rats by reducing blood glucose and suppressing bone turnover, Molecules, 24, 1871, https://doi.org/10.3390/molecules24101871.

    Article  CAS  PubMed Central  Google Scholar 

  13. Han, Y. Y., Song, M. Y., Hwang, M. S., Hwang, J. H., Park, Y. K., and Jung, H. W. (2016) Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes, Chinese J. Nat. Med., 14, 671-676, https://doi.org/10.1016/s1875-5364(16)30079-6.

    Article  CAS  Google Scholar 

  14. Han, Y., Jung, H. W., and Park, Y. K. (2015) Effects of Icariin on insulin resistance via the activation of AMPK pathway in C2C12 mouse muscle cells, Eur. J. Pharmacol., 758, 60-63, https://doi.org/10.1016/j.ejphar.2015.03.059.

    Article  CAS  PubMed  Google Scholar 

  15. Miller, R. A., and Birnbaum, M. J. (2010) An energetic tale of AMPK-independent effects of metformin, J. Clin. Invest., 120, 2267-2270.

    Article  CAS  Google Scholar 

  16. Choi, Y. J., Lee, K. Y., Jung, S. H., Kim, H. S., Shim, G., et al. (2017) Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice, Toxicol. Appl. Pharmacol., 316, 74-82.

    Article  CAS  Google Scholar 

  17. Wu, H., Deng, X., Shi, Y., Su, Y., Wei, J., and Duan, H. (2016) PGC-1α, glucose metabolism and type 2 diabetes mellitus, J. Endocrinol., 229, R99-R115.

    Article  CAS  Google Scholar 

  18. Govers, R. (2014) Molecular mechanisms of GLUT4 regulation in adipocytes, Diab. Metab., 40, 400-410, https://doi.org/10.1016/j.diabet.2014.01.005.

    Article  CAS  Google Scholar 

  19. Cao, D., Zhou, H., Zhao, J., Jin, L., Yu, W., et al. (2014) PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4, Oncol. Rep., 31, 1205-1210.

    Article  CAS  Google Scholar 

  20. Lu, Y.-F., Xu, Y.-Y., Jin, F., Wu, Q., Shi, J.-S., and Liu, J. (2014) Icariin is a PPARα activator inducing lipid metabolic gene expression in mice, Molecules, 19, 18179-18191, https://doi.org/10.3390/molecules191118179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao, X., Luo, T., Luo, X., and Tang, Z. (2014) Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice, Hypertens. Res., 37, 803-810, https://doi.org/10.1038/hr.2014.90.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, P., He, B., Yu, M., Shi, M., Zhu, Y., et al. (2019) Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1α/GLUT4 axis-mediated glucose consumption, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 1341-1350, https://doi.org/10.1016/j.bbadis.2019.02.002.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, Q., Cui, Y., Lin, N., and Pang, S. (2019) Correlation of cardiomyocyte apoptosis with duration of hypertension, severity of hypertension and caspase-3 expression in hypertensive rats, Exp. Ther. Med., 17, 2741-2745, https://doi.org/10.3892/etm.2019.7249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Asrih, M., and Jornayvaz, F. R. (2013) Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance, J. Endocrinol., 218, R25-36, https://doi.org/10.1530/joe-13-0201.

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed, M. H., and Byrne, C. D. (2007) Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD), Drug Discov. Today, 12, 740-747, https://doi.org/10.1016/j.drudis.2007.07.009.

    Article  CAS  PubMed  Google Scholar 

  26. Xin, H., Zhou, F., Liu, T., Li, G.-Y., Liu, J., et al. (2012) Icariin ameliorates streptozotocin-induced diabetic retinopathy in vitro and in vivo, Int. J. Mol. Sci., 13, 866-878, https://doi.org/10.3390/ijms13010866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, M., Zhang, Y., Cao, Y., Zhang, D., Liu, L., et al. (2018) Icariin ameliorates palmitate-induced insulin resistance through reducing Thioredoxin-Interacting Protein (TXNIP) and suppressing ER stress in C2C12 myotubes, Front. Pharmacol., 9, 1180, https://doi.org/10.3389/fphar.2018.01180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chatrath, H., Vuppalanchi, R., and Chalasani, N. (2012) Dyslipidemia in patients with nonalcoholic fatty liver disease, Semin. Liver Dis., 32, 22-29, https://doi.org/10.1055/s-0032-1306423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iliopoulos, D., Drosatos, K., Hiyama, Y., Goldberg, I. J., and Zannis, V. I. (2010) MicroRNA-370 controls the expression of microRNA-122 and Cpt1α and affects lipid metabolism, J. Lipid Res., 51, 1513-1523, https://doi.org/10.1194/jlr.M004812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Esler, W. P., and Bence, K. K. (2019) Metabolic targets in nonalcoholic fatty liver disease, Cell. Mol. Gastroenterol. Hepatol., 8, 247-267, https://doi.org/10.1016/j.jcmgh.2019.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brownsey, R. W., Zhande, R., and Boone, A. N. (1997) Isoforms of acetyl-CoA carboxylase: structures, regulatory properties and metabolic functions, Biochem. Soc. Trans., 25, 1232-1238, https://doi.org/10.1042/bst0251232.

    Article  CAS  PubMed  Google Scholar 

  32. Kim, C. W., Addy, C., Kusunoki, J., Anderson, N. N., Deja, S., et al. (2017) Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation, Cell Metab., 26, 394-406.e396, https://doi.org/10.1016/j.cmet.2017.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pettinelli, P., Del Pozo, T., Araya, J., Rodrigo, R., Araya, A. V., et al. (2009) Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion, Biochim. Biophys. Acta Mol. Bas. Disease, 1792, 1080-1086.

    Article  CAS  Google Scholar 

  34. Lee, M., Katerelos, M., Gleich, K., Galic, S., Kemp, B. E., et al. (2018) Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin, J. Am. Soc. Nephrol., 29, 2326-2336, https://doi.org/10.1681/ASN.2018010050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abu-Elheiga, L., Jayakumar, A., Baldini, A., Chirala, S. S., and Wakil, S. J. (1995) Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms, Proc. Natl. Acad. Sci. USA, 92, 4011-4015, https://doi.org/10.1073/pnas.92.9.4011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hou, Y., Gu, D., Peng, J., Jiang, K., Li, Z., et al. (2020) Ginsenoside Rg1 regulates liver lipid factor metabolism in NAFLD model rats, ACS Omega, 5, 10878-10890, https://doi.org/10.1021/acsomega.0c00529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, C.-M., Yuan, R.-S., Zhuang, W.-Y., Sun, J.-H., Wu, J.-Y., et al. (2016) Schisandra polysaccharide inhibits hepatic lipid accumulation by downregulating expression of SREBPs in NAFLD mice, Lipids Health Disease, 15, 195, https://doi.org/10.1186/s12944-016-0358-5.

    Article  CAS  Google Scholar 

  38. Liu, X., Chhipa, R. R., Nakano, I., and Dasgupta, B. (2014) The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent, Mol. Cancer Ther., 13, 596-605, https://doi.org/10.1158/1535-7163.MCT-13-0579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, L., Gong, B., Duan, W., Fan, C., Zhang, J., et al. (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling, Sci. Rep., 7, 41337-41337, https://doi.org/10.1038/srep41337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hardie, D. G., and Sakamoto, K. (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle, Physiology (Bethesda), 21, 48-60, https://doi.org/10.1152/physiol.00044.2005.

    Article  CAS  Google Scholar 

  41. O’Neill, H. M., Holloway, G. P., and Steinberg, G. R. (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity, Mol. Cell. Endocrinol., 366, 135-151, https://doi.org/10.1016/j.mce.2012.06.019.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, S.-Q., Ding, L.-N., Zeng, N.-X., Liu, H.-M., Zheng, S.-H., et al. (2019) Icariin induces irisin/FNDC5 expression in C2C12 cells via the AMPK pathway, Biomed. Pharmacother., 115, 108930-108930, https://doi.org/10.1016/j.biopha.2019.108930.

    Article  CAS  PubMed  Google Scholar 

  43. Aschenbach, J. R., Steglich, K., Gäbel, G., and Honscha, K. U. (2009) Expression of mRNA for glucose transport proteins in jejunum, liver, kidney and skeletal muscle of pigs, J. Physiol. Biochem., 65, 251-266, https://doi.org/10.1007/bf03180578.

    Article  CAS  PubMed  Google Scholar 

  44. Weston, C. J., and Adams, D. H. (2011) Hepatic consequences of vascular adhesion protein-1 expression, J. Neural Transm., 118, 1055-1064, https://doi.org/10.1007/s00702-011-0647-0.

    Article  CAS  PubMed  Google Scholar 

  45. Tang, Y., and Chen, A. (2010) Curcumin prevents leptin raising glucose levels in hepatic stellate cells by blocking translocation of glucose transporter-4 and increasing glucokinase, Br. J. Pharmacol., 161, 1137-1149, https://doi.org/10.1111/j.1476-5381.2010.00956.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharabi, K., Lin, H., Tavares, C. D. J., Dominy, J. E., Camporez, J. P., et al. (2017) Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes, Cell, 169, 148-160.e115, https://doi.org/10.1016/j.cell.2017.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, S., and Czech, M. P. (2007) The GLUT4 glucose transporter, Cell Metab., 5, 237-252, https://doi.org/10.1016/j.cmet.2007.03.006.

    Article  CAS  PubMed  Google Scholar 

  48. Leto, D., and Saltiel, A. R. (2012) Regulation of glucose transport by insulin: traffic control of GLUT4, Nat. Rev. Mol. Cell Biol., 13, 383-396, https://doi.org/10.1038/nrm3351.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., et al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1, Cell, 98, 115-124, https://doi.org/10.1016/S0092-8674(00)80611-X.

    Article  CAS  PubMed  Google Scholar 

  50. Benton, C. R., Holloway, G. P., Han, X. X., Yoshida, Y., Snook, L. A., et al. (2010) Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats, Diabetologia, 53, 2008-2019, https://doi.org/10.1007/s00125-010-1773-1.

    Article  CAS  PubMed  Google Scholar 

  51. Ding, L., Liang, X. G., Zhu, D. Y., and Lou, Y. J. (2007) Icariin promotes expression of PGC-1alpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro, Acta Pharmacol. Sin., 28, 1541-1549.

    Article  CAS  Google Scholar 

  52. Zhu, H. R., Wang, Z. Y., Zhu, X. L., Wu, X. X., Li, E. G., and Xu, Y. (2010) Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke, Neuropharmacology, 59, 70-76.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by Wenzhou Municipal Sci-Tech Bureau Program (project Y20190127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erjiong Huang or Qihan Zhu.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Jin, Y., Hu, X. et al. AMPK/PGC-1α/GLUT4-Mediated Effect of Icariin on Hyperlipidemia-Induced Non-Alcoholic Fatty Liver Disease and Lipid Metabolism Disorder in Mice. Biochemistry Moscow 86, 1407–1417 (2021). https://doi.org/10.1134/S0006297921110055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921110055

Keywords

Navigation