Skip to main content
Log in

Identification of Key Amino Acid Residues Involved in the Localization of Sorting Nexin 10 and Induction of Vacuole Formation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Sorting nexin 10 (SNX10) induces formation of vacuoles participating in the endosome morphogenesis in mammalian cells, but the key amino acids involved in this function have not been fully identified. In this study, point mutations were introduced to the conserved region of the SNX10 PX domain to elucidate the function of these key amino acid residues. The number of vacuoles in the R53A mutant was partially decreased, while the R52A and R51A mutants completely lacked the vacuoles. All mutant proteins lost the phosphatidylinositol 3-phosphate (PtdIns3P)-binding ability and endosomal localization. Retargeting the mutants to the endosomes rescued partially or fully the vacuole-inducing ability in the R51A and R53A mutants, respectively, but not in the R52A mutant. No vacuoles were induced when the R51A mutant was targeted to other organelles. Structural analysis showed that Arg53 is responsible for the PtdIns(3)P binding, whereas Arg51 and Arg52 contribute to the structural integrity of SNX10. We conclude that the disruption of the key residues affects the structure and function of SNX10 and that induction of vacuole formation by SNX10 depends on its endosomal location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

COX8:

cytochrome c oxidase subunit VIII

JMJD6:

jumonji domain containing 6

MTS:

mitochondrial target sequence

NLS:

nuclear location sequence

PX:

Phox homology

SNX10:

sorting nexin 10

References

  1. Worby, C. A., and Dixon, J. E. (2002) Sorting out the cellular functions of sorting nexins, Nat. Rev. Mol. Cell Biol., 3, 919-931, https://doi.org/10.1038/nrm974.

    Article  CAS  PubMed  Google Scholar 

  2. Teasdale, R. D., and Collins, B. M. (2012) Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease, Biochem. J., 441, 39-59, https://doi.org/10.1042/BJ20111226.

    Article  CAS  PubMed  Google Scholar 

  3. Mas, C., Norwood, S. J., Bugarcic, A., Kinna, G., Leneva, N., et al. (2014) Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling, J. Biol. Chem., 289, 28554-28568, https://doi.org/10.1074/jbc.M114.595959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ponting, C. P. (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Protein Sci., 5, 2353-2357, https://doi.org/10.1002/pro.5560051122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanai, F., Liu, H., Field, S. J., Akbary, H., Matsuo, T., et al. (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K, Nat. Cell. Biol., 3, 675-678, https://doi.org/10.1038/35083070.

    Article  CAS  PubMed  Google Scholar 

  6. Megarbane, A., Pangrazio, A., Villa, A., Chouery, E., Maarawi, J., et al. (2013) Homozygous stop mutation in the SNX10 gene in a consanguineous Iraqi boy with osteopetrosis and corpus callosum hypoplasia, Eur. J. Med. Genet., 56, 32-35, https://doi.org/10.1016/j.ejmg.2012.10.010.

    Article  PubMed  Google Scholar 

  7. Gallon, M., and Cullen, P. J. (2015) Retromer and sorting nexins in endosomal sorting, Biochem. Soc. Trans., 43, 33-47, https://doi.org/10.1042/BST20140290.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, H., Huang, T., Hong, Y., Yang, W., Zhang, X., et al. (2018) The retromer complex and sorting nexins in neurodegenerative diseases, Front. Aging Neurosci., 10, 79, https://doi.org/10.3389/fnagi.2018.00079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin, B., He, M., Chen, X., and Pei, D. (2006) Sorting nexin 10 induces giant vacuoles in mammalian cells, J. Biol. Chem., 281, 36891-36896, https://doi.org/10.1074/jbc.M608884200.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y., Wu, B., Xu, L., Li, H., Xia, J., et al. (2012) A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo, Cell Res., 22, 333-345, https://doi.org/10.1038/cr.2011.134.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, C. H., Morse, L. R., and Battaglino, R. A. (2011) SNX10 is required for osteoclast formation and resorption activity, J. Cell Biochem., 113, 1608-1615, https://doi.org/10.1002/jcb.24029.

    Article  CAS  Google Scholar 

  12. Aker, M., Rouvinski, A., Hashavia, S., Ta-Shma, A., Shaag, A., et al. (2012) An SNX10 mutation causes malignant osteopetrosis of infancy, J. Med. Genet., 49, 221-226, https://doi.org/10.1136/jmedgenet-2011-100520.

    Article  CAS  PubMed  Google Scholar 

  13. Kocak, G., Guzel, B. N., Mihci, E., Kupesiz, O. A., Yalcin, K., and Manguoglu, A. E. (2019) TCIRG1 and SNX10 gene mutations in the patients with autosomal recessive osteopetrosis, Gene, 702, 83-88, https://doi.org/10.1016/j.gene.2019.02.088.

    Article  CAS  PubMed  Google Scholar 

  14. Pangrazio, A., Fasth, A., Sbardellati, A., Orchard, P. J., Kasow, K. A., et al. (2013) SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity, J. Bone Miner. Res., 28, 1041-1049, https://doi.org/10.1002/jbmr.1849.

    Article  CAS  PubMed  Google Scholar 

  15. Stattin, E. L., Henning, P., Klar, J., McDermott, E., Stecksen-Blicks, C., et al. (2017) SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts, Sci. Rep., 7, 3012, https://doi.org/10.1038/s41598-017-02533-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao, D., Wu, B., Qin, B., and Pei, D. (2009) PX domain and CD domain play different roles in localization and vacuolation of Sorting Nexin 10, Chin. Sci. Bull., 54, 3965-3971, https://doi.org/10.1007/s11434-009-0529-0.

    Article  CAS  Google Scholar 

  17. Bravo, J., Karathanassis, D., Pacold, C. M., Pacold, M. E., Ellson, C. D., et al. (2001) The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate, Mol. Cell, 8, 829-839, https://doi.org/10.1016/s1097-2765(01)00372-0.

    Article  CAS  PubMed  Google Scholar 

  18. Battaglino, R. A., Jha, P., Sultana, F., Liu, W., and Morse, L. R. (2019) FKBP12: a partner of Snx10 required for vesicular trafficking in osteoclasts, J. Cell. Biochem., 120, 13321-13329, https://doi.org/10.1002/jcb.28606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sultana, F., Morse, L. R., Picotto, G., Liu, W., Jha, P. K., et al. (2019) Snx10 and PIKfyve are required for lysosome formation in osteoclasts, J. Cell. Biochem., 121, 2927-2937, https://doi.org/10.1002/jcb.29534.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, S., Hu, B., You, Y., Yang, Z., Liu, L., et al. (2018) Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21(Cip1/WAF1), Cancer Lett., 419, 116-127, https://doi.org/10.1016/j.canlet.2018.01.045.

    Article  CAS  PubMed  Google Scholar 

  21. Elson, A., Stein, M., Rabie, G., Barnea-Zohar, M., Winograd-Katz, S., et al. (2021) Sorting Nexin 10 as a key regulator of membrane trafficking in bone-resorbing osteoclasts: lessons learned from osteopetrosis, Front. Cell Dev. Biol., 9, 671210, https://doi.org/10.3389/fcell.2021.671210.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Seet, L. F., and Hong, W. (2006) The Phox (PX) domain proteins and membrane traffic, Biochim. Biophys. Acta, 1761, 878-896, https://doi.org/10.1016/j.bbalip.2006.04.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (81560005 and 81760007), Natural Science Foundation of Guangxi province (project no. 2018GXNSFAA138052), and The Guangxi Medical Care Appropriate Technology Research and Development (project no. S201603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yao.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any studies involving human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Liu, N., Hou, L. et al. Identification of Key Amino Acid Residues Involved in the Localization of Sorting Nexin 10 and Induction of Vacuole Formation. Biochemistry Moscow 86, 1377–1387 (2021). https://doi.org/10.1134/S000629792111002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792111002X

Keywords

Navigation