Skip to main content
Log in

RNA Aptamers for Theranostics of Glioblastoma of Human Brain

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2′-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer – EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Abbreviations

2′-F-Py:

2′-fluoropyrimidine

A431:

human epidermoid carcinoma cell line

aK D :

apparent dissociation constant

EGFR:

receptor of epidermal growth factor

FAM:

5(6)-carboxyfluorescein

GBM:

human glioblastoma multiforme

MCF7:

human luminal breast adenocarcinoma cell line

MoRE:

molecular recognition element

U87:

human glioblastoma cell line

References

  1. Kopylov, A. M., Zavyalova, E. G., Pavlova, G. V., and Pronin, I. N. (2020) Theranostics of glioblastoma with monoclonal antibodies to epidermal growth factor receptor, Zhurn. Voprosy Neirokhirurgii im. Burdenko, 84, 113-118, https://doi.org/10.17116/neiro202084031113.

    Article  CAS  Google Scholar 

  2. Spirin, A. S. (2019) Molecular biology. Ribosomes and Protein Synthesis, Laboratoriya Znanii, Moscow.

  3. Ellington, A. D., and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818-822, https://doi.org/10.1038/346818a0.

    Article  CAS  PubMed  Google Scholar 

  4. Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505-510, https://doi.org/10.1126/science.2200121.

    Article  CAS  PubMed  Google Scholar 

  5. Robertson, D. L., and Joyce, G. F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature, 344, 467-468, https://doi.org/10.1038/344467a0.

    Article  CAS  PubMed  Google Scholar 

  6. Antipova, O. M., Zavyalova, E. G., Golovin, A. V., Pavlova, G. V., Kopylov, A. M., and Reshetnikov, R. V. (2018) Advances in the application of modified nucleotides in SELEX technology, Biochemistry (Moscow), 10, 1161-1172, https://doi.org/10.1134/S0006297918100024.

    Article  Google Scholar 

  7. Metelev, V. G., and Oretskaya, T. S. (2021) Modified oligonucleotides: new structures, new properties, and new spheres of application, Russ. J. Bioorg. Chem., 47, 339-343, https://doi.org/10.1134/S1068162021020175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mendelsohn, J. (2004) EGF receptors as a target for cancer therapy, Trans. Am. Clin. Climatol. Assoc., 115, 249-253.

    PubMed  PubMed Central  Google Scholar 

  9. Carpenter, G. (1983) The biochemistry and physiology of the receptor-kinase for epidermal growth factor, Mol. Cell. Endocrinol., 31, 1-19, https://doi.org/10.1016/0303-7207(83)90027-8.

    Article  CAS  PubMed  Google Scholar 

  10. Carpenter, G. (1984) Properties of the receptor for epidermal growth factor, Cell, 37, 357-358, https://doi.org/10.1016/0092-8674(84)90365-9.

    Article  CAS  PubMed  Google Scholar 

  11. Carpenter, G., and Cohen, S. (1979) Epidermal growth factor, Annu. Rev. Biochem., 48, 193-216, https://doi.org/10.1146/annurev.bi.48.070179.001205.

    Article  CAS  PubMed  Google Scholar 

  12. Wikstrand, C. J., McLendon, R. E., Friedman, A. H., and Bigner, D. D. (1997) Cell surface localization and density of the tumor-associated variant of the epidermal growth factor receptor, EGFRvIII, Cancer Res., 57, 4130-4140.

    CAS  PubMed  Google Scholar 

  13. Wan, Y., Kim, Y. T., Li, N., Cho, S. K., Bachoo, R., et al. (2010) Surface-immobilized aptamers for cancer cell isolation and microscopic cytology, Cancer Res., 70, 9371-9380, https://doi.org/10.1158/0008-5472.CAN-10-0568.

    Article  CAS  PubMed  Google Scholar 

  14. Li, N., Larson, T., Nguyen, H. H., Sokolov, K. V., and Ellington, A. D. (2010) Directed evolution of gold nanoparticle delivery to cells, Chem. Commun. (Camb)., 46, 392-394, https://doi.org/10.1039/b920865h.

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, P., and Mendelsohn, J. (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model, Clin. Cancer Res., 1, 1311-1318.

    CAS  PubMed  Google Scholar 

  16. Groner, B., Hartmann, C., and Wels, W. (2004) Therapeutic antibodies, Curr. Mol. Med., 4, 539-547, https://doi.org/10.2174/1566524043360483.

    Article  CAS  PubMed  Google Scholar 

  17. Li, N., Nguyen, H. H., Byrom, M., and Ellington, A. D. (2011) Inhibition of cell proliferation by an anti-EGFR aptamer, PLoS One, 6, e20299, https://doi.org/10.1371/journal.pone.0020299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, N., Wang, Y., Pothukuchy, A., Syrett, A., Husain, N., et al. (2008) Aptamers that recognize drug-resistant HIV-1 reverse transcriptase, Nucleic Acids Res., 36, 6739-6751, https://doi.org/10.1093/nar/gkn775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan, Y., Tamuly, D., Allen, P. B., Kim, Y. T., Bachoo, R., et al. (2013) Proliferation and migration of tumor cells in tapered channels, Biomed. Microdevices, 15, 635-643, https://doi.org/10.1007/s10544-012-9721-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ilyas, A., Asghar, W., Allen, P. B., Duhon, H., Ellington, A. D., and Iqbal, S. M. (2012) Electrical detection of cancer biomarker using aptamers with nanogap break-junctions, Nanotechnology, 23, 275502, https://doi.org/10.1088/0957-4484/23/27/275502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wan, Y., Liu, Y., Allen, P. B., Asghar, W., Mahmood, M. A., et al. (2012) Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array, Lab. Chip, 12, 4693-4701, https://doi.org/10.1039/c2lc21251j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan, Y., Mahmood, M. A., Li, N., Allen, P. B., Kim, Y. T., et al. (2012) Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology, Cancer, 118, 1145-1154, https://doi.org/10.1002/cncr.26349.

    Article  CAS  PubMed  Google Scholar 

  23. Avutu, V. (2010) Avidity Effects of MinE07, an Anti-EGFR Aptamer, on Binding to A431 Cells, Texas Scholar Works University of Texas at Austin.

  24. Kim, H. J., Park, J. Y., Lee, T. S., Song, I. H., Cho, Y. L., et al. (2019) PET imaging of HER2 expression with an 18F-fluoride labeled aptamer, PLoS One, 14, e0211047, https://doi.org/10.1371/journal.pone.0211047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, S., Jacobson, O., Zhu, G., Chen, Z., Liang, S. H., et al. (2019) PET imaging of EGFR expression using an 18F-labeled RNA aptamer, Eur. J. Nucl. Med. Mol. Imaging, 46, 948-956, https://doi.org/10.1007/s00259-018-4105-1. Erratum in: Eur. J. Nucl. Med. Mol. Imaging, (2018) 45, 2245.

    Article  CAS  PubMed  Google Scholar 

  26. Melancon, M. P., Zhou, M., Zhang, R., Xiong, C., Allen, P., et al. (2014) Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth factor receptors overexpressed in head and neck cancer, ACS Nano, 8, 4530-4538, https://doi.org/10.1021/nn406632u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ray, P., Cheek, M. A., Sharaf, M. L., Li, N., Ellington, A. D., et al. (2012) Aptamer-mediated delivery of chemotherapy to pancreatic cancer cells, Nucleic Acid Ther., 22, 295-305, https://doi.org/10.1089/nat.2012.0353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. L., Chang, L. C., Chen, K. B., and Wang, S. C. (2021) Aptamer-guided targeting of the intracellular long-noncoding RNA HOTAIR, Am. J. Cancer Res., 11, 945-954.

    PubMed  PubMed Central  Google Scholar 

  29. Opazo, F., Levy, M., Byrom, M., Schäfer, C., Geisler, C., et al. (2012) Aptamers as potential tools for super-resolution microscopy, Nat. Methods, 9, 938-939, https://doi.org/10.1038/nmeth.2179.

    Article  CAS  PubMed  Google Scholar 

  30. Strauss, S., Nickels, P. C., Strauss, M. T., Jimenez Sabinina, V., Ellenberg, J., et al. (2018) Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging, Nat. Methods, 15, 685-688, https://doi.org/10.1038/s41592-018-0105-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delcanale, P., Porciani, D., Pujals, S., Jurkevich, A., Chetrusca, A., et al. (2020) Aptamers with tunable affinity enable single-molecule tracking and localization of membrane receptors on living cancer cells, Angew. Chem. Int. Ed. Engl., 59, 18546-18555, https://doi.org/10.1002/anie.202004764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esposito, C. L., Passaro, D., Longobardo, I., Condorelli, G., Marotta, P., et al. (2011) A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death, PLoS One, 6, e24071, https://doi.org/10.1371/journal.pone.0024071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Passariello, M., Camorani, S., Vetrei, C., Ricci, S., Cerchia, L., and De Lorenzo, C. (2020) Ipilimumab and its derived EGFR aptamer-based conjugate induce efficient NK cell activation against cancer cells, Cancers (Basel), 12, 331, https://doi.org/10.3390/cancers12020331.

    Article  CAS  Google Scholar 

  34. Peng, L., Liang, Y., Zhong, X., Liang, Z., Tian, Y., et al. (2020) Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the Treatment of glioblastoma, Int. J. Nanomedicine, 15, 1363-1372, https://doi.org/10.2147/IJN.S238206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zavyalova, E., Turashev, A., Novoseltseva, A., Legatova, V., Antipova, O., et al. (2020) Pyrene-modified DNA aptamers with high affinity to wild-type EGFR and EGFRvIII, Nucleic Acid Ther., 30, 175-187, https://doi.org/10.1089/nat.2019.0830.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, T., Philippovich, S., Mao, J., and Veedu, R. N. (2019) Efficient epidermal growth factor receptor targeting oligonucleotide as a potential molecule for targeted cancer therapy, Int. J. Mol. Sci., 20, 4700, https://doi.org/10.3390/ijms20194700.

    Article  CAS  PubMed Central  Google Scholar 

  37. Reuter, J. S., and Mathews, D. H. (2010) RNA structure: software for RNA secondary structure prediction and analysis, BMC Bioinformatics, 11, 129, https://doi.org/10.1186/1471-2105-11-129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zok, T., Antczak, M., Zurkowski, M., Popenda, M., Blazewicz, J., et al. (2018) RNApdbee 2.0: multifunctional tool for RNA structure annotation, Nucleic Acids Res., 46, W30-W35, https://doi.org/10.1093/nar/gky314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haigler, H., Ash, J. F., Singer, S. J., and Cohen, S. (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431, Proc. Natl. Acad. Sci. USA, 75, 3317-3321, https://doi.org/10.1073/pnas.75.7.3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Obaid, G., Samkoe, K., Tichauer, K., Bano, S., Park, Y., et al. (2021) Is tumor cell specificity distinct from tumor selectivity in vivo? A quantitative NIR molecular imaging analysis of nanoliposome targeting, Nano Res., 14, 1344-1354, https://doi.org/10.1007/s12274-020-3178-x.

    Article  CAS  PubMed  Google Scholar 

  41. Davidson, N. E., Gelmann, E. P., Lippman, M. E., and Dickson, R. B. (1987) Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines, Mol. Endocrinol., 1, 216-223, https://doi.org/10.1210/mend-1-3-216.

    Article  CAS  PubMed  Google Scholar 

  42. Pallan, P. S., Greene, E. M., Jicman, P. A., Pandey, R. K., Manoharan, M., et al. (2011) Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA, Nucleic Acids Res., 39, 3482-3495, https://doi.org/10.1093/nar/gkq1270.

    Article  CAS  PubMed  Google Scholar 

  43. Murray, J. B., Dunham, C. M., and Scott, W. G. (2002) A pH-dependent conformational change, rather than the chemical step, appears to be rate-limiting in the hammerhead ribozyme cleavage reaction, J. Mol. Biol., 315, 121-130, https://doi.org/10.1006/jmbi.2001.5145.

    Article  CAS  PubMed  Google Scholar 

  44. Piao, X., Wang, H., Binzel, D. W., and Guo, P. (2018) Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2′-F RNA, and LNA in the context of Phi29 pRNA 3WJ, RNA, 24, 67-76, https://doi.org/10.1261/rna.063057.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, N., Ebright, J. N., Stovall, G. M., Chen, X., Nguyen, H. H., et al. (2009) Technical and biological issues relevant to cell typing with aptamers, J. Proteome Res., 8, 2438-2448, https://doi.org/10.1021/pr801048z.

    Article  CAS  PubMed  Google Scholar 

  46. Cochran, J. R., Kim, Y. S., Olsen, M. J., Bhandari, R., and Wittrup, K. D. (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments, J. Immunol. Methods, 287, 147-158, https://doi.org/10.1016/j.jim.2004.01.024.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. A. Bisyaeva, S. F. Drozd, and M. V. Ryzhova for permanent help during this work.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation [project no. 075-15-2020-809 (13.1902.21.0030)] and by the Russian Foundation for Basic Research (project no. 18-29-01047 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey M. Kopylov.

Ethics declarations

The authors declare no conflict of interest in financial or in any other area. All procedures used in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Written consent was obtained from all participants in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.M., Fab, L.V., Antipova, O. et al. RNA Aptamers for Theranostics of Glioblastoma of Human Brain. Biochemistry Moscow 86, 1012–1024 (2021). https://doi.org/10.1134/S0006297921080113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921080113

Keywords

Navigation